Abstract

The dispersion and mode characteristics in a dual-concentric-core photonic crystal fiber, based on pure silica, are simulated by the multipole method. The fiber exhibits very large negative dispersion due to anticrossing of two individual inner core and outer core modes. Near the wavelength of 1.55μm, we could obtain narrowband dispersion-compensating fiber with dispersion values of 23,000ps/km/nm, broadband dispersion-compensating fiber with dispersion values from 1000ps/km/nm to 2500ps/km/nm over a 200nm range, and kappa values near 300nm, which matched well with standard single mode fiber. It shows that even if there are some changes in the structure parameters during fabrication, these fibers can still maintain a fine dispersion-compensating property.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).
  2. S. G. Li, X. D. Liu, and L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin. 53, 1880-1886 (2004).
  3. Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).
  4. S. G. Yang, Y. J. Zhang, L. N. He, and S. Z. Xie, “Broadband dispersion-compensating photonic crystal fiber,” Opt. Lett. 31, 2830-2832 (2006).
    [CrossRef]
  5. A. Huttunen and P. Torma, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13, 627-635 (2005).
    [CrossRef]
  6. Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
    [CrossRef]
  7. L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540-542 (2003).
  8. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A 20, 1958-1962 (2003).
    [CrossRef]
  9. B. Zsigri, J. Laegsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt. 6, 717-720 (2004).
    [CrossRef]
  10. F. Gérôme, J. L. Auguste, and J. M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29, 2725-2727 (2004).
    [CrossRef]
  11. J. C. Knight, A. T. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
  12. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
    [CrossRef]
  13. Z. Wang, G. B. Ren, and S. Q. Lou, “Mode disorder in elliptical hole PCFs,” Opt. Fiber Technol. 10, 124-132 (2004).
  14. S. G. Li, X. D. Liu, and L. T. Hou, “The study of waveguide mode and dispersion property in photonic crystal fibres,” Acta Phys. Sin. 53, 2811-2817 (2004).
  15. X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).
  16. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, D. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002).
  17. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  18. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746-1756 (2003).
  19. S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
    [CrossRef]
  20. R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567-572 (2008).
    [CrossRef]

2008

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567-572 (2008).
[CrossRef]

2007

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
[CrossRef]

2006

S. G. Yang, Y. J. Zhang, L. N. He, and S. Z. Xie, “Broadband dispersion-compensating photonic crystal fiber,” Opt. Lett. 31, 2830-2832 (2006).
[CrossRef]

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
[CrossRef]

2005

2004

S. G. Li, X. D. Liu, and L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin. 53, 1880-1886 (2004).

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

B. Zsigri, J. Laegsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

F. Gérôme, J. L. Auguste, and J. M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29, 2725-2727 (2004).
[CrossRef]

Z. Wang, G. B. Ren, and S. Q. Lou, “Mode disorder in elliptical hole PCFs,” Opt. Fiber Technol. 10, 124-132 (2004).

S. G. Li, X. D. Liu, and L. T. Hou, “The study of waveguide mode and dispersion property in photonic crystal fibres,” Acta Phys. Sin. 53, 2811-2817 (2004).

2003

2002

2000

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

1996

Russell, P. St. J.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

An, L.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

Atkin, D. M.

Auguste, J. L.

Birks, A. T.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

Bjarklev, A.

B. Zsigri, J. Laegsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

Blondy, J. M.

Botten, L. C.

Chen, G. X.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540-542 (2003).

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

Cucinotta, A.

Damsgaard, H.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

Edvold, B.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

Fan, C. C.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

Florous, N. J.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
[CrossRef]

Fujisawa, T.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
[CrossRef]

Fuochi, M.

Gérôme, F.

Gruner-Nielsen, L.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

He, L. N.

Hou, L. T.

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

S. G. Li, X. D. Liu, and L. T. Hou, “The study of waveguide mode and dispersion property in photonic crystal fibres,” Acta Phys. Sin. 53, 2811-2817 (2004).

S. G. Li, X. D. Liu, and L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin. 53, 1880-1886 (2004).

Huang, W. P.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540-542 (2003).

Huttunen, A.

Jian, S. S.

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
[CrossRef]

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540-542 (2003).

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

J. C. Knight, A. T. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).

Knudsen, S. N.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

Koshiba, M.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
[CrossRef]

M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746-1756 (2003).

Kuhlmey, B. T.

Laegsgaard, J.

B. Zsigri, J. Laegsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

Larsen, C. C.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

Li, S. G.

S. G. Li, X. D. Liu, and L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin. 53, 1880-1886 (2004).

S. G. Li, X. D. Liu, and L. T. Hou, “The study of waveguide mode and dispersion property in photonic crystal fibres,” Acta Phys. Sin. 53, 2811-2817 (2004).

Liu, X. D.

S. G. Li, X. D. Liu, and L. T. Hou, “The study of waveguide mode and dispersion property in photonic crystal fibres,” Acta Phys. Sin. 53, 2811-2817 (2004).

S. G. Li, X. D. Liu, and L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin. 53, 1880-1886 (2004).

Liu, Y.

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
[CrossRef]

Liu, Z. L.

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

Lou, S. Q.

Z. Wang, G. B. Ren, and S. Q. Lou, “Mode disorder in elliptical hole PCFs,” Opt. Fiber Technol. 10, 124-132 (2004).

Ma, J. R.

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

Magnussen, D.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

Martijn de Sterke, C.

Maystre, D.

McPhedran, R. C.

Musin, R. R.

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567-572 (2008).
[CrossRef]

Ni, Y.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

Ning, T. G.

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
[CrossRef]

Peng, J. D.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

Poli, F.

Ren, G. B.

Z. Wang, G. B. Ren, and S. Q. Lou, “Mode disorder in elliptical hole PCFs,” Opt. Fiber Technol. 10, 124-132 (2004).

Renversez, D.

Renversez, G.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

Saitoh, K.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
[CrossRef]

M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746-1756 (2003).

Selleri, S.

Shen, L. P.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540-542 (2003).

Tan, Z. W.

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
[CrossRef]

Tong, Z.

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
[CrossRef]

Torma, P.

Varshney, S. K.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
[CrossRef]

Veng, T.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

Vincetti, L.

Wang, W.

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

Wang, Z.

Z. Wang, G. B. Ren, and S. Q. Lou, “Mode disorder in elliptical hole PCFs,” Opt. Fiber Technol. 10, 124-132 (2004).

Wei, H. Y.

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

White, T. P.

Xie, S. Z.

Yang, S. G.

Zhang, L.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

Zhang, Y. J.

Zhao, X. T.

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

Zheltikov, A. M.

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567-572 (2008).
[CrossRef]

Zsigri, B.

B. Zsigri, J. Laegsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

Acta Phys. Sin.

S. G. Li, X. D. Liu, and L. T. Hou, “Numerical study on dispersion compensating property in photonic crystal fibers,” Acta Phys. Sin. 53, 1880-1886 (2004).

S. G. Li, X. D. Liu, and L. T. Hou, “The study of waveguide mode and dispersion property in photonic crystal fibres,” Acta Phys. Sin. 53, 2811-2817 (2004).

X. T. Zhao, L. T. Hou, Z. L. Liu, W. Wang, H. Y. Wei, and J. R. Ma, “Dispersion analysis of photonic crystal fiber using improved fully vectorial effective index method,” Acta Phys. Sin. 56, 321-326 (2007).

Chin. Phys.

Z. W. Tan, T. G. Ning, Y. Liu, Z. Tong, and S. S. Jian, “Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems,” Chin. Phys. 15, 1819-1825 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15, 540-542 (2003).

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516-1518 (2004).

J. Opt. A Pure Appl. Opt.

B. Zsigri, J. Laegsgaard, and A. Bjarklev, “A novel photonic crystal fibre design for dispersion compensation,” J. Opt. A Pure Appl. Opt. 6, 717-720 (2004).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S+C+L wavelength bands,” Opt. Commun. 274, 74-79 (2007).
[CrossRef]

R. R. Musin and A. M. Zheltikov, “Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm,” Opt. Commun. 281, 567-572 (2008).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164-180(2000).

Z. Wang, G. B. Ren, and S. Q. Lou, “Mode disorder in elliptical hole PCFs,” Opt. Fiber Technol. 10, 124-132 (2004).

Opt. Lett.

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Cross section of the proposed PCF.

Fig. 2
Fig. 2

Modes of the PCF with Λ = 12 μm , d 1 = 0.96 μm , and d 2 = 0.48 μm for (a) λ = 1.54 μm , (b) λ = 1.58 μm , and (c) λ = 1.62 μm , respectively.

Fig. 3
Fig. 3

(a) Effective refractive index and (b) dispersion curves of PCF with Λ = 12 μm , d 1 = 0.96 μm , and d 2 = 0.48 μm .

Fig. 4
Fig. 4

Dispersion curves with d 1 / λ = 0.8 and d 2 / d 1 = 0.5 for different Λ.

Fig. 5
Fig. 5

Dispersion curves with Λ = 12 μm and d 2 / d 1 = 0.5 for different d 1 .

Fig. 6
Fig. 6

Dispersion curves with Λ = 12 μm and d 2 / d 1 = 0.5 for different d 2 .

Fig. 7
Fig. 7

Dispersion curve with Λ = 12 μm , d 1 = 1.1 μm , and d 2 = 0.51 μm .

Fig. 8
Fig. 8

(a) Dispersion, (b) dispersion slope, (c) kappa value of the PCF as a function of wavelength with Λ = 0.8 μm and d 1 = 0.76 μm for different d 2 .

Fig. 9
Fig. 9

(a) Dispersion, (b) dispersion slope, (c) kappa value of the PCF as a function of wavelength with Λ = 0.8 μm and d 2 = 0.56 μm for different d 1 .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

V = m [ A m l J m ( K e r l ) + B m l H m l ( K e r l ) ] e i m θ l ,
B l = R l A l ,
B = R A .
A 0 = R 0 B 0 ,
A l = j l H l j B j + Γ l 0 A 0 ,
A = HB + Γ B 0 A 0
B 0 = Γ 0 B B .
[ I R ( H + Γ B 0 R 0 Γ 0 B ) ] B = 0 ,
MB         =       0 ,
D ( λ ) = λ c λ d 2 n eff ( λ ) d λ 2 .
D 1 L 1 + D 12 L 2 = 0 ,
D slope 1 L 1 + D slope 2 L 2 = 0 ,
D 1 D slope 1 = D 2 D slope 2 .
kappa = D / D s , s lope ,
A eff [ ( r ) d r ] I 2 ( r ) d r ,

Metrics