Abstract

The effect of an applied electric field on the properties of strongly anisotropic a-axis single-crystal fiber is studied theoretically. We solve the electromagnetic field equations for strongly anisotropic a-axis single-crystal fiber and numerically analyze the mode characteristics of the fiber that conducts only the zeroth-order elementary mode. We discuss the effects that an applied electric field has on the refractive index anisotropy and the mode characteristics of the fiber that conducts only the zeroth-order elementary mode.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991).
    [CrossRef]
  2. Y. Sugiyama, I. Hatakeyama, and I. Yokohama, “Growth of a-axis strontium barium niobate single crystal fibers,” J. Cryst. Growth 134, 255-265 (1993).
    [CrossRef]
  3. Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994).
    [CrossRef]
  4. Y.-J. Lai and J.-C. Chen, “Effects of the laser heating and air bubbles on the morphologies of c-axis LiNbO3 fibers,” J. Cryst. Growth 231, 222-229 (2001).
    [CrossRef]
  5. K. Nagashio, A. Watcharapasorn, R. C. DeMattei, and R. S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method,” J. Cryst. Growth 265, 190-197 (2004).
    [CrossRef]
  6. J. H. Sharp, “Graded-index characteristics in single-crystal fibers,” Opt. Lett. 23, 109-110 (1998).
    [CrossRef]
  7. W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
    [CrossRef]
  8. A. S. S. de Camargo, L. A. O. Nunes, D. R. Ardila, and J. P. Andreeta, “Excited-state absorption and 1064-nm end-pumped laser emission of Nd:YVO4 single-crystal fiber grown by laser-heated pedestal growth,” Opt. Lett. 29, 59-61 (2004).
    [CrossRef] [PubMed]
  9. S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
    [CrossRef]
  10. S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008).
    [CrossRef]
  11. M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.
  12. R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000).
    [CrossRef]
  13. Z. Yu, R. Y. Guo, and A. S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals,” J. Appl. Phys. 88, 410-415(2000).
    [CrossRef]
  14. W. L. Mammel and L. G. Cohen, “Numerical prediction of fiber transmission characteristics from arbitrary refractive-index profiles,” Appl. Opt. 21, 699-703 (1982).
    [CrossRef] [PubMed]
  15. A. W. Snyder, J. D. Love, and R. A. Sammut, “Green's-function methods for perturbed optical fibers,” J. Opt. Soc. Am. 72, 1131-1135 (1982).
    [CrossRef]
  16. A. W. Snyder and F. Rühl, “Ultrahigh birefringent optical fibers,” IEEE J. Quantum Electron. QE-20, 80-85 (1984).
    [CrossRef]
  17. A. Tonning, “Circularly symmetric optical waveguide with strong anisotropy,” IEEE Trans. Microwave Theory Tech. MTT-30, 790-794 (1982).].
    [CrossRef]
  18. C.-L. Chen, “An analysis of high birefringence fibers,” J. Lightwave Technol. 5, 53-60 (1987).
    [CrossRef]
  19. J. D. Dai and C. K. Jen, “Analysis of cladded uniaxial single crystal fiber,” J. Opt. Soc. Am. A 8, 2021-2025 (1991).
    [CrossRef]
  20. R.-B. Wu, “Explicit birefringence analysis for anisotropic fibers,” J. Lightwave Technol. 10, 6-11 (1992).
    [CrossRef]
  21. M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42, 6267-6275 (2003).
    [CrossRef] [PubMed]
  22. M. Eguchi and S. Horinouchi, “Finite-element modal analysis of large-core multimode optical fibers,” Appl. Opt. 43, 2163-2167 (2004).
    [CrossRef] [PubMed]
  23. S. S. A. Obayya, S. Haxha, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of polarization conversion in semiconductor electro-optic modulators,” Appl. Opt. 44, 1032-1038 (2005).
    [CrossRef] [PubMed]
  24. S. S. A. Obayya, “Scalar finite-element analysis of optical-fiber facets,” J. Lightwave Technol. 24, 2115-2121 (2006).
    [CrossRef]
  25. A. J. Kobelansky and J. P. Webb, “Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields,” Electron. Lett. 22, 569-570 (1986).
    [CrossRef]
  26. M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of micro wave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371-377 (1992).
    [CrossRef]
  27. L. Vardapetyan, L. Demkowicz, and D. Neikirk, “hp-Vector finite element method for eigenmode analysis of waveguides,” Comput. Methods Appl. Mech. Eng. 192, 185-201(2003).
    [CrossRef]
  28. A. D. Bresler, “Vector formulations for the field equations in anisotropic waveguides,” IEEE Trans. Microwave Theory Tech. 7, 298 (1959).
    [CrossRef]
  29. W. K. Burns and T. Warner, “Mode dispersion in uniaxial optical waveguides,” J. Opt. Soc. Am. 64, 441-446 (1974).
    [CrossRef]
  30. W. X. Que, X. Yao, and Y. J. Huo, “Mg-ion indiffusion of lithium niobate single crystal fiber,” Sci. China Ser. A 38, 1399-1408 (1995).
  31. G. M. Davis and N. A. Lindop, “Fabrication and characterization of pyrophosphoric acid proton exchanged lithium tantalate waveguides,” J. Appl. Phys. 77, 6121-6127(1995).
    [CrossRef]
  32. D. P. S. Saini, Y. Shimoji, R. S. F. Chang, and N. Djeu, “Cladding of a crystal fiber by high-energy ion implantation,” Opt. Lett. 16, 1074-1076 (1991).
    [CrossRef] [PubMed]
  33. W. H. Yu and W. Y. Liu, Crystal Physics (U. of Science and Technology of China Press, 1998).

2008

S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008).
[CrossRef]

2006

2005

S. S. A. Obayya, S. Haxha, B. M. A. Rahman, and K. T. V. Grattan, “Numerical modeling of polarization conversion in semiconductor electro-optic modulators,” Appl. Opt. 44, 1032-1038 (2005).
[CrossRef] [PubMed]

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

2004

2003

M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42, 6267-6275 (2003).
[CrossRef] [PubMed]

L. Vardapetyan, L. Demkowicz, and D. Neikirk, “hp-Vector finite element method for eigenmode analysis of waveguides,” Comput. Methods Appl. Mech. Eng. 192, 185-201(2003).
[CrossRef]

2001

Y.-J. Lai and J.-C. Chen, “Effects of the laser heating and air bubbles on the morphologies of c-axis LiNbO3 fibers,” J. Cryst. Growth 231, 222-229 (2001).
[CrossRef]

2000

R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000).
[CrossRef]

Z. Yu, R. Y. Guo, and A. S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals,” J. Appl. Phys. 88, 410-415(2000).
[CrossRef]

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

1998

1995

W. X. Que, X. Yao, and Y. J. Huo, “Mg-ion indiffusion of lithium niobate single crystal fiber,” Sci. China Ser. A 38, 1399-1408 (1995).

G. M. Davis and N. A. Lindop, “Fabrication and characterization of pyrophosphoric acid proton exchanged lithium tantalate waveguides,” J. Appl. Phys. 77, 6121-6127(1995).
[CrossRef]

1994

Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994).
[CrossRef]

1993

Y. Sugiyama, I. Hatakeyama, and I. Yokohama, “Growth of a-axis strontium barium niobate single crystal fibers,” J. Cryst. Growth 134, 255-265 (1993).
[CrossRef]

1992

M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of micro wave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371-377 (1992).
[CrossRef]

R.-B. Wu, “Explicit birefringence analysis for anisotropic fibers,” J. Lightwave Technol. 10, 6-11 (1992).
[CrossRef]

1991

Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991).
[CrossRef]

J. D. Dai and C. K. Jen, “Analysis of cladded uniaxial single crystal fiber,” J. Opt. Soc. Am. A 8, 2021-2025 (1991).
[CrossRef]

D. P. S. Saini, Y. Shimoji, R. S. F. Chang, and N. Djeu, “Cladding of a crystal fiber by high-energy ion implantation,” Opt. Lett. 16, 1074-1076 (1991).
[CrossRef] [PubMed]

1987

C.-L. Chen, “An analysis of high birefringence fibers,” J. Lightwave Technol. 5, 53-60 (1987).
[CrossRef]

1986

A. J. Kobelansky and J. P. Webb, “Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields,” Electron. Lett. 22, 569-570 (1986).
[CrossRef]

1984

A. W. Snyder and F. Rühl, “Ultrahigh birefringent optical fibers,” IEEE J. Quantum Electron. QE-20, 80-85 (1984).
[CrossRef]

1982

1974

1959

A. D. Bresler, “Vector formulations for the field equations in anisotropic waveguides,” IEEE Trans. Microwave Theory Tech. 7, 298 (1959).
[CrossRef]

Andreeta, J. P.

Ardila, D. R.

Bhalla, A.

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

Bhalla, A. S.

Z. Yu, R. Y. Guo, and A. S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals,” J. Appl. Phys. 88, 410-415(2000).
[CrossRef]

R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000).
[CrossRef]

Bresler, A. D.

A. D. Bresler, “Vector formulations for the field equations in anisotropic waveguides,” IEEE Trans. Microwave Theory Tech. 7, 298 (1959).
[CrossRef]

Burns, W. K.

Burshtein, Z.

S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008).
[CrossRef]

Chan, Y. C.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

Chang, R. S. F.

Chen, C.-L.

C.-L. Chen, “An analysis of high birefringence fibers,” J. Lightwave Technol. 5, 53-60 (1987).
[CrossRef]

Chen, J.-C.

Y.-J. Lai and J.-C. Chen, “Effects of the laser heating and air bubbles on the morphologies of c-axis LiNbO3 fibers,” J. Cryst. Growth 231, 222-229 (2001).
[CrossRef]

Cohen, L. G.

Dai, J. D.

Davis, G. M.

G. M. Davis and N. A. Lindop, “Fabrication and characterization of pyrophosphoric acid proton exchanged lithium tantalate waveguides,” J. Appl. Phys. 77, 6121-6127(1995).
[CrossRef]

de Camargo, A. S. S.

DeMattei, R. C.

K. Nagashio, A. Watcharapasorn, R. C. DeMattei, and R. S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method,” J. Cryst. Growth 265, 190-197 (2004).
[CrossRef]

Demkowicz, L.

L. Vardapetyan, L. Demkowicz, and D. Neikirk, “hp-Vector finite element method for eigenmode analysis of waveguides,” Comput. Methods Appl. Mech. Eng. 192, 185-201(2003).
[CrossRef]

Djeu, N.

Eguchi, M.

Feigelson, R. S.

K. Nagashio, A. Watcharapasorn, R. C. DeMattei, and R. S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method,” J. Cryst. Growth 265, 190-197 (2004).
[CrossRef]

Grattan, K. T. V.

Gu, M.

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

Guo, R. Y.

Z. Yu, R. Y. Guo, and A. S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals,” J. Appl. Phys. 88, 410-415(2000).
[CrossRef]

R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000).
[CrossRef]

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

Hatakeyama, I.

Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994).
[CrossRef]

Y. Sugiyama, I. Hatakeyama, and I. Yokohama, “Growth of a-axis strontium barium niobate single crystal fibers,” J. Cryst. Growth 134, 255-265 (1993).
[CrossRef]

Hatano, T.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Haxha, S.

Horinouchi, S.

Huo, Y. J.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

W. X. Que, X. Yao, and Y. J. Huo, “Mg-ion indiffusion of lithium niobate single crystal fiber,” Sci. China Ser. A 38, 1399-1408 (1995).

Inoue, K.

M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of micro wave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371-377 (1992).
[CrossRef]

Jen, C. K.

Kam, C. H.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

Kim, G.-S.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Kim, S.-J.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Kobelansky, A. J.

A. J. Kobelansky and J. P. Webb, “Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields,” Electron. Lett. 22, 569-570 (1986).
[CrossRef]

Koshiba, M.

M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42, 6267-6275 (2003).
[CrossRef] [PubMed]

M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of micro wave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371-377 (1992).
[CrossRef]

Kubodera, K.

Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991).
[CrossRef]

Lai, Y.-J.

Y.-J. Lai and J.-C. Chen, “Effects of the laser heating and air bubbles on the morphologies of c-axis LiNbO3 fibers,” J. Cryst. Growth 231, 222-229 (2001).
[CrossRef]

Lam, Y. L.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

Lindop, N. A.

G. M. Davis and N. A. Lindop, “Fabrication and characterization of pyrophosphoric acid proton exchanged lithium tantalate waveguides,” J. Appl. Phys. 77, 6121-6127(1995).
[CrossRef]

Liu, H. B.

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

Liu, W. Y.

W. H. Yu and W. Y. Liu, Crystal Physics (U. of Science and Technology of China Press, 1998).

Love, J. D.

Mammel, W. L.

Nagashio, K.

K. Nagashio, A. Watcharapasorn, R. C. DeMattei, and R. S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method,” J. Cryst. Growth 265, 190-197 (2004).
[CrossRef]

Neikirk, D.

L. Vardapetyan, L. Demkowicz, and D. Neikirk, “hp-Vector finite element method for eigenmode analysis of waveguides,” Comput. Methods Appl. Mech. Eng. 192, 185-201(2003).
[CrossRef]

Nunes, L. A. O.

Obayya, S. S. A.

Pattnaik, R.

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

Perets, S.

S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008).
[CrossRef]

Povoa, J. M.

R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000).
[CrossRef]

Que, W. X.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

W. X. Que, X. Yao, and Y. J. Huo, “Mg-ion indiffusion of lithium niobate single crystal fiber,” Sci. China Ser. A 38, 1399-1408 (1995).

Rahman, B. M. A.

Rühl, F.

A. W. Snyder and F. Rühl, “Ultrahigh birefringent optical fibers,” IEEE J. Quantum Electron. QE-20, 80-85 (1984).
[CrossRef]

Saini, D. P. S.

Saitoh, K.

Sammut, R. A.

Sharp, J. H.

Shimoji, Y.

Shneck, R. Z.

S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008).
[CrossRef]

Snyder, A. W.

A. W. Snyder and F. Rühl, “Ultrahigh birefringent optical fibers,” IEEE J. Quantum Electron. QE-20, 80-85 (1984).
[CrossRef]

A. W. Snyder, J. D. Love, and R. A. Sammut, “Green's-function methods for perturbed optical fibers,” J. Opt. Soc. Am. 72, 1131-1135 (1982).
[CrossRef]

Sugiyama, Y.

Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994).
[CrossRef]

Y. Sugiyama, I. Hatakeyama, and I. Yokohama, “Growth of a-axis strontium barium niobate single crystal fibers,” J. Cryst. Growth 134, 255-265 (1993).
[CrossRef]

Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991).
[CrossRef]

Tachiki, M.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Tachiki, T.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Takano, Y.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Tanaka, I.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Tonning, A.

A. Tonning, “Circularly symmetric optical waveguide with strong anisotropy,” IEEE Trans. Microwave Theory Tech. MTT-30, 790-794 (1982).].
[CrossRef]

Toulouse, J.

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

Tseitlin, M.

S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008).
[CrossRef]

Vardapetyan, L.

L. Vardapetyan, L. Demkowicz, and D. Neikirk, “hp-Vector finite element method for eigenmode analysis of waveguides,” Comput. Methods Appl. Mech. Eng. 192, 185-201(2003).
[CrossRef]

Wang, J. F.

R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000).
[CrossRef]

Warner, T.

Watcharapasorn, A.

K. Nagashio, A. Watcharapasorn, R. C. DeMattei, and R. S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method,” J. Cryst. Growth 265, 190-197 (2004).
[CrossRef]

Webb, J. P.

A. J. Kobelansky and J. P. Webb, “Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields,” Electron. Lett. 22, 569-570 (1986).
[CrossRef]

Wu, R.-B.

R.-B. Wu, “Explicit birefringence analysis for anisotropic fibers,” J. Lightwave Technol. 10, 6-11 (1992).
[CrossRef]

Yagi, S.

Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994).
[CrossRef]

Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991).
[CrossRef]

Yamashita, T.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

Yao, X.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

W. X. Que, X. Yao, and Y. J. Huo, “Mg-ion indiffusion of lithium niobate single crystal fiber,” Sci. China Ser. A 38, 1399-1408 (1995).

Yokohama, I.

Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994).
[CrossRef]

Y. Sugiyama, I. Hatakeyama, and I. Yokohama, “Growth of a-axis strontium barium niobate single crystal fibers,” J. Cryst. Growth 134, 255-265 (1993).
[CrossRef]

Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991).
[CrossRef]

Yu, W. H.

W. H. Yu and W. Y. Liu, Crystal Physics (U. of Science and Technology of China Press, 1998).

Yu, Z.

Z. Yu, R. Y. Guo, and A. S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals,” J. Appl. Phys. 88, 410-415(2000).
[CrossRef]

Zhou, Y.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

Zhou, Z. X.

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

Appl. Opt.

Comput. Methods Appl. Mech. Eng.

L. Vardapetyan, L. Demkowicz, and D. Neikirk, “hp-Vector finite element method for eigenmode analysis of waveguides,” Comput. Methods Appl. Mech. Eng. 192, 185-201(2003).
[CrossRef]

Electron. Lett.

A. J. Kobelansky and J. P. Webb, “Eliminating spurious modes in finite-element waveguide problems by using divergence-free fields,” Electron. Lett. 22, 569-570 (1986).
[CrossRef]

IEEE J. Quantum Electron.

A. W. Snyder and F. Rühl, “Ultrahigh birefringent optical fibers,” IEEE J. Quantum Electron. QE-20, 80-85 (1984).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Sugiyama, I. Yokohama, K. Kubodera, and S. Yagi, “Growth and photorefractive properties of a- and c-axis cerium-doped strontium barium niobate single crystal fibers,” IEEE Photon. Technol. Lett. 3, 744-746 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

A. Tonning, “Circularly symmetric optical waveguide with strong anisotropy,” IEEE Trans. Microwave Theory Tech. MTT-30, 790-794 (1982).].
[CrossRef]

A. D. Bresler, “Vector formulations for the field equations in anisotropic waveguides,” IEEE Trans. Microwave Theory Tech. 7, 298 (1959).
[CrossRef]

M. Koshiba and K. Inoue, “Simple and efficient finite-element analysis of micro wave and optical waveguides,” IEEE Trans. Microwave Theory Tech. 40, 371-377 (1992).
[CrossRef]

IEEE. Trans. Appl. Supercond.

S.-J. Kim, T. Hatano, G.-S. Kim, T. Tachiki, I. Tanaka, Y. Takano, M. Tachiki, and T. Yamashita, “Transport characteristics in c-axis La2−xSrxCuO4 (LSCO) single crystals,” IEEE. Trans. Appl. Supercond. 15, 3782-3785 (2005).
[CrossRef]

J. Appl. Phys.

Z. Yu, R. Y. Guo, and A. S. Bhalla, “Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals,” J. Appl. Phys. 88, 410-415(2000).
[CrossRef]

G. M. Davis and N. A. Lindop, “Fabrication and characterization of pyrophosphoric acid proton exchanged lithium tantalate waveguides,” J. Appl. Phys. 77, 6121-6127(1995).
[CrossRef]

J. Cryst. Growth

Y. Sugiyama, I. Hatakeyama, and I. Yokohama, “Growth of a-axis strontium barium niobate single crystal fibers,” J. Cryst. Growth 134, 255-265 (1993).
[CrossRef]

Y.-J. Lai and J.-C. Chen, “Effects of the laser heating and air bubbles on the morphologies of c-axis LiNbO3 fibers,” J. Cryst. Growth 231, 222-229 (2001).
[CrossRef]

K. Nagashio, A. Watcharapasorn, R. C. DeMattei, and R. S. Feigelson, “Fiber growth of near stoichiometric LiNbO3 single crystals by the laser-heated pedestal growth method,” J. Cryst. Growth 265, 190-197 (2004).
[CrossRef]

J. Lightwave Technol.

C.-L. Chen, “An analysis of high birefringence fibers,” J. Lightwave Technol. 5, 53-60 (1987).
[CrossRef]

R.-B. Wu, “Explicit birefringence analysis for anisotropic fibers,” J. Lightwave Technol. 10, 6-11 (1992).
[CrossRef]

S. S. A. Obayya, “Scalar finite-element analysis of optical-fiber facets,” J. Lightwave Technol. 24, 2115-2121 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Mater. Lett.

R. Y. Guo, J. F. Wang, J. M. Povoa, and A. S. Bhalla, “Electrooptic properties and their temperature dependence in single crystals of lead barium niobate and strontium barium niobate,” Mater. Lett. 42, 130-135 (2000).
[CrossRef]

Opt. Eng.

W. X. Que, Y. Zhou, Y. L. Lam, Y. C. Chan, C. H. Kam, Y. J. Huo, and X. Yao, “Second-harmonic generation using an a axis Nd:MgO:LiNbO3 single crystal fiber with Mg-ion indiffused cladding,” Opt. Eng. 39, 2804-2809 (2000).
[CrossRef]

Opt. Laser Technol.

Y. Sugiyama, S. Yagi, I. Yokohama, and I. Hatakeyama, “Growth and photorefractive properties of a-axis Ce doped strontium barium niobate (SBN) single-crystal fibres,” Opt. Laser Technol. 26, 136 (1994).
[CrossRef]

Opt. Lett.

Opt. Mater.

S. Perets, M. Tseitlin, R. Z. Shneck, and Z. Burshtein, “Refractive index dispersion and anisotropy in NaGd(WO4)2 single crystal,” Opt. Mater. 30, 1251-1256 (2008).
[CrossRef]

Sci. China Ser. A

W. X. Que, X. Yao, and Y. J. Huo, “Mg-ion indiffusion of lithium niobate single crystal fiber,” Sci. China Ser. A 38, 1399-1408 (1995).

Other

M. Gu, H. B. Liu, Z. X. Zhou, R. Pattnaik, J. Toulouse, A. Bhalla, and R. Y. Guo, “Growth of single crystal ferroelectric fibers and tapers for all fiber network applications,” in Advances in Dielectric Materials and Electronic Devices, K. M. Nair, R. Guo, A. S. Bhalla, D. Suvorov, and S. -I. Hirano, eds., Vol. 174 of Ceramic Transactions (American Ceramic Society, 2005), pp. 297-304.

W. H. Yu and W. Y. Liu, Crystal Physics (U. of Science and Technology of China Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

a-axis single-crystal fiber with coordinate x, y, z axes aligned with the principal axes of the refractive index.

Fig. 2
Fig. 2

Dispersion relation curve of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.002 when m = 0 .

Fig. 3
Fig. 3

Transverse electric field components of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.002 at V = 4.5 , b = 0.6088 when m = 0 .

Fig. 4
Fig. 4

Transverse electric field components of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.002 at V = 4.5 , b = 0.0991 when m = 0 .

Fig. 5
Fig. 5

Anisotropic a-axis single-crystal fiber with applied electric field.

Fig. 6
Fig. 6

Dispersion relation curve of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.001 when m = 0 .

Fig. 7
Fig. 7

Dispersion relation curve of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.003 when m = 0 .

Fig. 8
Fig. 8

Dispersion relation curve of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.004 when m = 0 .

Fig. 9
Fig. 9

Transverse electric field components of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.001 at V = 4.5 , b = 0.8105 when m = 0 .

Fig. 10
Fig. 10

Transverse electric field components of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.001 at V = 4.5 , b = 0.7103 when m = 0 .

Fig. 11
Fig. 11

Transverse electric field components of the a-axis single-crystal fiber with d r d = 0.01 and d e o = d e o d = 0.001 at V = 4.5 , b = 0.0997 when m = 0 .

Tables (1)

Tables Icon

Table 1 Voltage of the Electric Field Applied on the a-Axis Single Crystal Fiber

Equations (81)

Equations on this page are rendered with MathJax. Learn more.

ε = [ n e 2 0 0 0 n o 2 0 0 0 n o 2 ] .
E ( x , y , z ) = [ e t ( x , y ) + a ^ z e z ( x , y ) ] e j β z ,
H ( x , y , z ) = [ h t ( x , y ) + a ^ z h z ( x , y ) ] e j β z ,
= t + j β a ^ z = [ a ^ x x + a ^ y y ] + j β a ^ z ,
t × e t = j ω μ 0 h z a ^ z ,
a ^ z × ( j β e t t e z ) = j ω μ 0 h t ,
t × h t = j ω ε 0 n o 2 e z a ^ z ,
a ^ z × ( j β h t t h z ) = j ω ε 0 ε t · e t ,
ε t = [ n e 2 0 0 n o 2 ] .
h z = 1 j ω μ 0 ( e y x e x y ) ,
h y = 1 j β · 1 j ω μ 0 ( 2 e y x y 2 e x y 2 ) + ω ε 0 n e 2 β e x ,
h x = 1 β ω μ 0 ( 2 e y x 2 2 e x x y ) ω ε 0 n o 2 β e y ,
e z = 1 j β ( e y y + n e 2 n o 2 e x x ) .
2 e x x 2 + n o 2 n e 2 2 e x y 2 + U x 2 a 2 n o 2 n e 2 e x = 0 ,
2 e y x 2 + 2 e y y 2 + U y 2 a 2 e y = n o 2 n e 2 n o 2 2 e x x y ,
U x = k 0 a n e 2 N 2 ,
U y = k 0 a n o 2 N 2 ,
y = n e n o y .
r = x 2 + y 2 = x 2 + n e 2 n o 2 y 2 ,
ϕ = tan 1 ( y x ) = tan 1 ( n e n o y x ) .
e x = A 0 J 0 ( n o n e U x r a ) + m = 1 A m J m ( n o n e U x r a ) cos m ϕ .
e y ( 0 ) = J m ( U y r a ) sin m ϕ .
J m ( n o n e U x r a ) sin m ϕ .
e x = m = 0 A m { c o J m ( n o n e U x r a ) cos m ϕ + c d ( J m 2 ( n o n e U x r a ) cos ( m 2 ) ϕ + J m + 2 ( n o n e U x r a ) cos ( m + 2 ) ϕ ) } ,
e y = m = 0 A m c r { J m + 2 ( n o n e U x r a ) sin ( m + 2 ) ϕ J m 2 ( n o n e U x r a ) sin ( m 2 ) ϕ } + n = 0 B n J n ( U y r a ) sin n ϕ ,
c r = 1 4 ( 1 n e 2 n o 2 ) n e n o ( n o n e U x 1 a ) 2 ,
c d = 1 4 ( 1 n e 2 n o 2 ) ( n o n e U x 1 a ) 2 ,
c o = U y 2 a 2 ( n o n e U x 1 a ) 2 1 2 ( 1 + n e 2 n o 2 ) .
e x = m = 0 C m { c o d K m ( n d o n d e W d e r a ) cos m ϕ + c d d ( K m 2 ( n d o n d e W d e r a ) cos ( m 2 ) ϕ + K m + 2 ( n d o n d e W d e r a ) cos ( m + 2 ) ϕ ) } ,
e y = m = 0 C m c r d { K m + 2 ( n d o n d e W d e r a ) sin ( m + 2 ) ϕ K m 2 ( n d o n d e W d e r a ) sin ( m 2 ) ϕ } + n = 0 D n K n ( W d o r a ) sin n ϕ ,
W d e = k 0 a N 2 n d e 2 ,
W d o = k 0 a N 2 n d o 2 .
e x ( r , φ ) = e x 0 R ( r ) + i = 1 [ e x i R c ( r ) cos i ϕ + e x i R s ( r ) sin i ϕ ] ,
e y ( r , φ ) = e y 0 R ( r ) + i = 1 [ e y i R c ( r ) cos i ϕ + e y i R s ( r ) sin i ϕ ] ,
e x ( r , φ ) = e x 0 D ( r ) + i = 1 [ e x i D c ( r ) cos i ϕ + e x i D s ( r ) sin i ϕ ] ,
e y ( r , φ ) = e y 0 D ( r ) + i = 1 [ e y i D c ( r ) cos i ϕ + e y i D s ( r ) sin i ϕ ] .
e x m 4 R c ( r ) = f m n 4 d 1 ( r ) × c d × α × A m ,
e x m 2 R c ( r ) = ( f m n 2 d 0 ( r ) × c d + f m n 2 d 1 ( r ) × c d × α + f m n 2 o 1 ( r ) × c o × α ) × A m ,
e x m R c ( r ) = ( f m d 1 ( r ) × c d × α ++ f m o 0 ( r ) × c o + f m o 1 ( r ) × c o × α ) × A m ,
e x m + 2 R c ( r ) = ( f m p 2 d 0 ( r ) × c d + f m p 2 d 1 ( r ) × c d × α + f m p 2 o 1 ( r ) × c o × α ) × A m ,
e x m + 4 R c ( r ) = f m p 4 d 1 ( r ) × c d × α × A m ,
e y m 4 R s ( r ) = p m n 4 r 1 ( r ) × c r × α × A m + q m n 4 ( r ) × B m 4 ,
e y m 2 R s ( r ) = ( p m n 2 r 0 ( r ) × c r + p m n 2 r 1 ( r ) × c r × α ) × A m + q m n 2 ( r ) × B m 2 ,
e y m R s ( r ) = p m r 1 ( r ) × c r × α × A m + q m n ( r ) × B m ,
e y m + 2 R s ( r ) = ( p m p 2 r 0 ( r ) × c r + p m p 2 r 1 ( r ) × c r × α ) × A m + q m p 2 ( r ) × B m + 2 ,
e y m + 4 R s ( r ) = p m p 4 r 1 ( r ) × c r × α × A m + q m p 4 ( r ) × B m + 4 .
e x m 4 D c ( r ) = h m n 4 d 1 ( r ) × c d d × α × C m ,
e x m 2 D c ( r ) = ( h m n 2 d 0 ( r ) × c d d + h m n 2 d 1 ( r ) × c d d × α + h m n 2 o 1 ( r ) × c o d × α ) × C m ,
e x m D c ( r ) = ( h m d 1 ( r ) × c d d × α + h m o 0 ( r ) × c o d + h m o 1 ( r ) × c o d × α ) × C m ,
e x m + 2 D c ( r ) = ( h m p 2 d 0 ( r ) × c d d + h m p 2 d 1 ( r ) × c d d × α + h m p 2 o 1 ( r ) × c o d × α ) × C m ,
e x m + 4 D c ( r ) = h m p 4 d 1 ( r ) × c d d × α × C m ,
e y m 4 D s ( r ) = s m n 4 r 1 ( r ) × c r d × α × C m + t m n 4 ( r ) × D m 4 ,
e y m 2 D s ( r ) = ( s m n 2 r 0 ( r ) × c r d + s m n 2 r 1 ( r ) × c r d × α ) × C m + t m n 2 ( r ) × D m 2 ,
e y m D s ( r ) = s m r 1 ( r ) × c r d × α × C m + t m n ( r ) × B m ,
e y m + 2 D s ( r ) = ( s m p 2 r 0 ( r ) × c r d + s m p 2 r 1 ( r ) × c r d × α ) × C m + t m p 2 ( r ) × D m + 2 ,
e y m + 4 D s ( r ) = s m p 4 r 1 ( r ) × c r d × α × C m + t m p 4 ( r ) × D m + 4 ,
U x k 0 a n e 2 n o 2 ,
U y 0 ;
c r 1 2 n e n o ( n o n e U x 1 a ) 2 α ,
c d = 1 2 ( n o n e U x 1 a ) 2 α ,
c o = ( n o n e U x 1 a ) 2 .
W d e W d o = k 0 a n o 2 n d e 2 ;
c r d 1 2 n d e n d o ( n d o n d e W d e 1 a ) 2 α ,
c d d 1 2 ( n d o n d e W d e 1 a ) 2 α ,
c o d 2 ( W d e 1 a ) 2 α .
| Q i j | = 0 ,
d r d = ( n e n d e ) / n e .
d e o = ( n e n o ) / n e .
d e o d = ( n d e n d o ) / n d e .
V = k 0 a n e 2 n d e 2 ,
b = ( N 2 n d e 2 ) / ( n e 2 n d e 2 ) .
3 m
n x = n e = n e 1 2 n e 3 γ 33 E ,
n y = n z = n o = n o 1 2 n o 3 γ 13 E ,
γ 33 = 3.09 × 10 11 m / V ,
γ 13 = 9.6 × 10 12 m / V .
Δ n 1 = n x n y ,
Δ n 2 = n x n z ,
Δ n 3 = n y n z ,
Δ n 1 = Δ n 2 = ( n e n o ) 1 2 ( n e 3 γ 33 n o 3 γ 13 ) E ,
Δ n 3 = 0.

Metrics