Abstract

We describe an optical system for detecting the movement of a surface with subnanosecond temporal and nanometer vertical displacement resolution. The system is fielded on an experiment to determine the distortion of a laser-ablated metal layer and compare the results with hydrodynamic simulations. We also discuss errors that can arise and potential means to mitigate them. The resultant data show one can examine dynamic changes to a reflective surface with accuracy down to tens of nanometers at hundreds of picoseconds time resolution.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577 (2001).
  2. T. D. Raymond, D. R. Neal, D. M. Topa, and T. L. Schmitz, “High-speed, non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208-216 (2002).
    [CrossRef]
  3. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998-1006 (1980).
    [CrossRef]
  4. A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
    [CrossRef] [PubMed]
  5. G. Rodriguez, A. R. Valenzuela, S. A. Clarke, and K. A. Thomas, “Topographic imaging and velocity measurements of surface expansion during laser ablation of a metal layer on glass,” Proc. SPIE 6261, 62610O (2006).
    [CrossRef]
  6. D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211-220 (1997).
    [CrossRef]
  7. J. Pfund, N. Lindlein, and J. Schwider, “Misalignment effects of the Shack-Hartmann sensor,” Appl. Opt. 37, 22-27 (1998).
    [CrossRef]
  8. S. Koulikov and D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol. A 145, 183-194(2001).
    [CrossRef]
  9. J. Larson, HYADES Radiation Hydrodynamics Simulation Code (Cascade Applied Sciences, 2000).
  10. N. Lindlein, J. Pfund, and J. Schwider, “Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 39, 2220-2225 (2000).
    [CrossRef]

2007

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

2006

G. Rodriguez, A. R. Valenzuela, S. A. Clarke, and K. A. Thomas, “Topographic imaging and velocity measurements of surface expansion during laser ablation of a metal layer on glass,” Proc. SPIE 6261, 62610O (2006).
[CrossRef]

2002

T. D. Raymond, D. R. Neal, D. M. Topa, and T. L. Schmitz, “High-speed, non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208-216 (2002).
[CrossRef]

2001

S. Koulikov and D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol. A 145, 183-194(2001).
[CrossRef]

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577 (2001).

2000

N. Lindlein, J. Pfund, and J. Schwider, “Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 39, 2220-2225 (2000).
[CrossRef]

1998

1997

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211-220 (1997).
[CrossRef]

1980

Armstrong, D. J.

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211-220 (1997).
[CrossRef]

Clarke, S. A.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

G. Rodriguez, A. R. Valenzuela, S. A. Clarke, and K. A. Thomas, “Topographic imaging and velocity measurements of surface expansion during laser ablation of a metal layer on glass,” Proc. SPIE 6261, 62610O (2006).
[CrossRef]

Dlott, D.

S. Koulikov and D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol. A 145, 183-194(2001).
[CrossRef]

Koulikov, S.

S. Koulikov and D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol. A 145, 183-194(2001).
[CrossRef]

Larson, J.

J. Larson, HYADES Radiation Hydrodynamics Simulation Code (Cascade Applied Sciences, 2000).

Lindlein, N.

N. Lindlein, J. Pfund, and J. Schwider, “Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 39, 2220-2225 (2000).
[CrossRef]

J. Pfund, N. Lindlein, and J. Schwider, “Misalignment effects of the Shack-Hartmann sensor,” Appl. Opt. 37, 22-27 (1998).
[CrossRef]

Neal, D. R.

T. D. Raymond, D. R. Neal, D. M. Topa, and T. L. Schmitz, “High-speed, non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208-216 (2002).
[CrossRef]

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211-220 (1997).
[CrossRef]

Pfund, J.

N. Lindlein, J. Pfund, and J. Schwider, “Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 39, 2220-2225 (2000).
[CrossRef]

J. Pfund, N. Lindlein, and J. Schwider, “Misalignment effects of the Shack-Hartmann sensor,” Appl. Opt. 37, 22-27 (1998).
[CrossRef]

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577 (2001).

Raymond, T. D.

T. D. Raymond, D. R. Neal, D. M. Topa, and T. L. Schmitz, “High-speed, non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208-216 (2002).
[CrossRef]

Rodriguez, G.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

G. Rodriguez, A. R. Valenzuela, S. A. Clarke, and K. A. Thomas, “Topographic imaging and velocity measurements of surface expansion during laser ablation of a metal layer on glass,” Proc. SPIE 6261, 62610O (2006).
[CrossRef]

Schmitz, T. L.

T. D. Raymond, D. R. Neal, D. M. Topa, and T. L. Schmitz, “High-speed, non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208-216 (2002).
[CrossRef]

Schwider, J.

N. Lindlein, J. Pfund, and J. Schwider, “Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 39, 2220-2225 (2000).
[CrossRef]

J. Pfund, N. Lindlein, and J. Schwider, “Misalignment effects of the Shack-Hartmann sensor,” Appl. Opt. 37, 22-27 (1998).
[CrossRef]

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577 (2001).

Southwell, W. H.

Thomas, K. A.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

G. Rodriguez, A. R. Valenzuela, S. A. Clarke, and K. A. Thomas, “Topographic imaging and velocity measurements of surface expansion during laser ablation of a metal layer on glass,” Proc. SPIE 6261, 62610O (2006).
[CrossRef]

Topa, D. M.

T. D. Raymond, D. R. Neal, D. M. Topa, and T. L. Schmitz, “High-speed, non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208-216 (2002).
[CrossRef]

Turner, W. T.

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211-220 (1997).
[CrossRef]

Valenzuela, A. R.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

G. Rodriguez, A. R. Valenzuela, S. A. Clarke, and K. A. Thomas, “Topographic imaging and velocity measurements of surface expansion during laser ablation of a metal layer on glass,” Proc. SPIE 6261, 62610O (2006).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

J. Photochem. Photobiol. A

S. Koulikov and D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol. A 145, 183-194(2001).
[CrossRef]

J. Refract. Surg.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573-577 (2001).

Opt. Eng.

N. Lindlein, J. Pfund, and J. Schwider, “Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 39, 2220-2225 (2000).
[CrossRef]

Proc. SPIE

T. D. Raymond, D. R. Neal, D. M. Topa, and T. L. Schmitz, “High-speed, non-interferometric nanotopographic characterization of Si wafer surfaces,” Proc. SPIE 4809, 208-216 (2002).
[CrossRef]

G. Rodriguez, A. R. Valenzuela, S. A. Clarke, and K. A. Thomas, “Topographic imaging and velocity measurements of surface expansion during laser ablation of a metal layer on glass,” Proc. SPIE 6261, 62610O (2006).
[CrossRef]

D. R. Neal, D. J. Armstrong, and W. T. Turner, “Wavefront sensors for control and process monitoring in optics manufacture,” Proc. SPIE 2993, 211-220 (1997).
[CrossRef]

Rev. Sci. Instrum.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

Other

J. Larson, HYADES Radiation Hydrodynamics Simulation Code (Cascade Applied Sciences, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the Shack–Hartmann-based DOTS system, including ablating and probe laser configurations. The inset is a photograph of the brass sample holder with a Ti disk, where the ablating laser is delivered by the fiber from the bottom and the probe propagates in the air directed from above. Temporal delay information is found by comparing the timing of the signals from photodiodes PD1 and PD2.

Fig. 2
Fig. 2

Steps in the CLAS-2D analysis routine where (a) an image from the CCD is processed for (b) the centroids of each focal spot, compared to the reference image centroids to determine (c) the slope of the wavefront, combined to provide (d) a mapping that can be displayed as (e) a three-dimensional model of the ROI around the observed plume.

Fig. 3
Fig. 3

Change in height in the region of interest at an ablation fluence of 4.1 J / cm 2 at a probe delay of (a)  4.0 ns , (b)  2.9 ns , (c)  0.3 ns , (d)  0.0 ns , (e) 2.6 ns , and (f)  6.6 ns . The color bar at the bottom corresponds to height in the DOTS images.

Fig. 4
Fig. 4

Comparison of (a) DOTS and (b) microscope images of an ablated sample with the latter showing a 500 μm calibration mark.

Fig. 5
Fig. 5

Calculated expansion velocity of the Ti layer in air for several laser pulse fluences over a spot size of 625 μm . The 15 ns laser pulse is time centered to have a maximum intensity at t = 30 ns .

Fig. 6
Fig. 6

Maximum height in the region of interest for each probe delay point by fluence. The ablating laser pulse temporal profile is approximated by the black line.

Fig. 7
Fig. 7

Comparison of DOTS and profilometry data in similar 70 μ m bins from the center of the ablated region.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

9   ps
100   ps
[ W ] i j = [ ( x y ) W ] i j = [ 1 f · ( Δ x Δ y ) ] i j ,
W i j MAX = M × d 2 f ,
Δ z i j W i j × d / M ,
W i j min = M × p 100 f ,
70 μ m

Metrics