Abstract

We comment on the recent paper by Zhou et al. [Appl. Opt. 45, 4433 (2006)], in which transmission losses of 0.20.3dB/m were claimed across the wavelength range 420900nm in a high-index (nd=1.80518 at 587.6nm) SF6 glass-based photonic crystal fiber fabricated by novel die-cast technique. If confirmed, these losses are at least 1 order of magnitude lower than previous reported losses of SF6 photonic crystal fibers from other fabrication approaches. Here we present a statistic survey on the relationship between the refractive index and the bulk material attenuation, based on a large number of commercial Schott optical glasses with the nd ranging between 1.40 and 2.05. It shows that the loss of a high-index (nd=1.80) glass optical fiber should be at the levels of 1050dB/m at 420nm and 110dB/m at 500nm, respectively. Moreover, the material attenuation of such a high-index glass fiber should intrinsically show a large decay, from 1050dB/m at 420nm to the level of 1dB/m at 700nm, which arises from the tail on the UV absorption edge of the high-index glass extending to the visible region. Therefore, we conclude that: (1) the low loss of 0.20.3dB/m reported in the cited paper is abnormally one or two magnitudes lower than the material attenuation that a high-index (nd=1.80) glass optical fiber should have in the range between 420 and 500nm and that (2) the flat loss curve between 420 and 700nm in the cited paper deviates greatly from the intrinsic behavior of a high-index (nd=1.80) glass fiber.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Zhou, Z. Hou, S. Li, and L. Hou, “Fabrication of glass photonic crystal fibers with a die-cast process,” Appl. Opt. 45, 4433-4436 (2006).
    [CrossRef]
  2. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Towards high-index-glass based monomode holey fibre with large-mode-area,” Electron. Lett. 40, 167-169 (2004).
    [CrossRef]
  3. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520-1525 (2002).
    [PubMed]
  4. W. Heitmann, “Attenuation measurement in low-loss optical glass by polarized radiation,” Appl. Opt. 14, 3047-3052 (1975).
    [PubMed]
  5. K. C. Kao and T. W. Davies, “Spectrophotometric studies of ultra low loss optical glasses I: single beam method,” J. Phys. E 2, 1063-1068 (1968).
    [CrossRef]
  6. P. Kaiser, “Spectral losses of unclad fibers made from high-grade vitreous silica,” Appl. Phys. Lett. 23, 45-46 (1973).
    [CrossRef]
  7. D. A. Pinnow and T. C. Rich, “Development of a calorimetric method for making precision optical absorption measurements,” Appl. Opt. 12, 984-992 (1973).
    [CrossRef] [PubMed]
  8. A. R. Tynes, A. D. Pearson, and D. L. Bisbee, “Loss mechanisms and measurements in clad glass fibers and bulk glass,” J. Opt. Soc. Am. 61, 143-153 (1971).
    [CrossRef]
  9. Schott E-Catalogue 2000--Optical Glass, for Windows, version 1.1E (Schott Glass, 2001).
  10. Schott E-Catalog Optical Glass: Schott'96, for Windows (Schott Glass, 1996).
  11. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046-2054 (2005).
    [CrossRef]
  12. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183-190 (2006).
    [CrossRef]

2006 (2)

2005 (1)

2004 (1)

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Towards high-index-glass based monomode holey fibre with large-mode-area,” Electron. Lett. 40, 167-169 (2004).
[CrossRef]

2002 (1)

1975 (1)

1973 (2)

1971 (1)

1968 (1)

K. C. Kao and T. W. Davies, “Spectrophotometric studies of ultra low loss optical glasses I: single beam method,” J. Phys. E 2, 1063-1068 (1968).
[CrossRef]

Asimakis, S.

Bisbee, D. L.

Davies, T. W.

K. C. Kao and T. W. Davies, “Spectrophotometric studies of ultra low loss optical glasses I: single beam method,” J. Phys. E 2, 1063-1068 (1968).
[CrossRef]

Ebendorff-Heidepriem, H.

Feng, X.

Finazzi, V.

Frampton, K. E.

George, A. K.

Heitmann, W.

Hewak, D. W.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046-2054 (2005).
[CrossRef]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Towards high-index-glass based monomode holey fibre with large-mode-area,” Electron. Lett. 40, 167-169 (2004).
[CrossRef]

Hou, L.

Hou, Z.

Kaiser, P.

P. Kaiser, “Spectral losses of unclad fibers made from high-grade vitreous silica,” Appl. Phys. Lett. 23, 45-46 (1973).
[CrossRef]

Kao, K. C.

K. C. Kao and T. W. Davies, “Spectrophotometric studies of ultra low loss optical glasses I: single beam method,” J. Phys. E 2, 1063-1068 (1968).
[CrossRef]

Knight, J. C.

Kumar, V. V. R. K.

Leong, J. Y. Y.

Li, S.

Mairaj, A. K.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046-2054 (2005).
[CrossRef]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Towards high-index-glass based monomode holey fibre with large-mode-area,” Electron. Lett. 40, 167-169 (2004).
[CrossRef]

Monro, T. M.

Moore, R. C.

Omenetto, F. G.

Pearson, A. D.

Petropoulos, P.

Pinnow, D. A.

Price, J. H. V.

Reeves, W. H.

Rich, T. C.

Richardson, D. J.

Russell, P. St. J.

Taylor, A. J.

Tynes, A. R.

Zhou, G.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Kaiser, “Spectral losses of unclad fibers made from high-grade vitreous silica,” Appl. Phys. Lett. 23, 45-46 (1973).
[CrossRef]

Electron. Lett. (1)

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Towards high-index-glass based monomode holey fibre with large-mode-area,” Electron. Lett. 40, 167-169 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Phys. E (1)

K. C. Kao and T. W. Davies, “Spectrophotometric studies of ultra low loss optical glasses I: single beam method,” J. Phys. E 2, 1063-1068 (1968).
[CrossRef]

Opt. Express (1)

Other (2)

Schott E-Catalogue 2000--Optical Glass, for Windows, version 1.1E (Schott Glass, 2001).

Schott E-Catalog Optical Glass: Schott'96, for Windows (Schott Glass, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Relationship between bulk attenuations (top, at 500 nm ; bottom, at 420 nm ) and the linear refractive index n d of 107 types of Schott optical glass.

Fig. 2
Fig. 2

Comparison of attenuations of unclad fibers and bulk attenuations of high-index Schott SF59, SF58, and SF6 glasses.

Metrics