Abstract

The distortion, noise, and bit-delay performance of a self-phase-modulation-based tunable delay system are analyzed. The pulse amplification required for achieving large spectral broadening results in large amplifier noise. We quantify the resulting delay versus signal-to-noise ratio trade-off. We demonstrate that for high bit rates it is difficult to achieve both large bit delay and good data fidelity. We find that for a given bit rate, reducing the duty cycle improves the fractional bit delay. For a duty cycle of 16%, a maximum bit delay of 15bits is achieved.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Herraez, K. Y. Song, and L. Thevenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
    [CrossRef]
  2. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201-206 (2007).
    [CrossRef]
  3. T. Schneider, M. Junker, and K.-U. Lauterbach, “Potential ultra wide slow-light bandwidth enhancement,” Opt. Express 14, 11082-11087 (2006).
    [CrossRef] [PubMed]
  4. Z. Zhu and D. J. Gauthier, “Nearly transparent SBS slow light in an optical fiber,” Opt. Express 14, 7238-7245 (2006).
    [CrossRef] [PubMed]
  5. A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866-5876 (2006).
    [CrossRef] [PubMed]
  6. Z. Lu, Y. Dong and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871-1877 (2007).
    [CrossRef] [PubMed]
  7. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30, 1782-1784(2005).
    [CrossRef] [PubMed]
  8. A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498-8505(2006).
    [CrossRef] [PubMed]
  9. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye-diagrams for slow-light systems,” Appl. Opt. 46, 6513-6519 (2007).
    [CrossRef] [PubMed]
  10. Z. Shi, R. W. Boyd, R. Pant, M. D. Stenner, M. A. Neifeld, Z. Zhu, and D. J. Gauthier, “Design of a tunable time-delay element using multiple gain lines for large fractional delay with high data fidelity,” Opt. Lett. 32, 1986-1988 (2007).
    [CrossRef] [PubMed]
  11. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764-2777 (2008).
    [CrossRef] [PubMed]
  12. Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022-12027 (2006).
    [CrossRef] [PubMed]
  13. S. Oda and A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895-7902(2006).
    [CrossRef] [PubMed]
  14. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, 1998 (IEEE, 1998), Vol. 1, pp. 475-476.
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Acadmic, 2001).
  16. S. Vorbeck and M. Schneiders, “Cumulative nonlinear phase shift as engineering rule for performance estimation in 160-Gb/s transmission system,” IEEE Photon. Technol. Lett. 16, 2571-2573 (2004).
    [CrossRef]
  17. J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
    [CrossRef]
  18. R. Pant, M. D. Stenner, and M. A. Neifeld, “Distortion, noise, and delay study for self-phase modulation based slow-light system,” in Laser Science, OSA Technical Digest (CD) (Optical Society of America, 2007), paper LWE4.
  19. M. Stern, J. P. Heritage, R. N. Thurston, and S. Tu, “Self-phase modulation and dispersion in high data rate fiber-optic transmission systems,” J. Lightwave Technol. 8, 1009-1016(1990).
    [CrossRef]
  20. J. Sharping, Y. Okawachi, J. V. Howe, C. Xu, Y. Wang, A. Wilner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13, 7872-7877 (2005).
    [CrossRef] [PubMed]
  21. I. Fazal, O. Yilmaz, S. Nuccio, B. Zhang, A. E. Wilner, C. Langrock, and M. M. Fejer, “Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion,” Opt. Express 15, 10492-10497 (2007).
    [CrossRef] [PubMed]
  22. A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30, 2375-2377 (2005).
    [CrossRef] [PubMed]
  23. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, “Parametric Raman wavelength conversion in scaled silicon waveguides,” J. Lightwave Technol. 23, 2094-2102 (2005).
    [CrossRef]
  24. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
    [CrossRef]
  25. A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
    [CrossRef]
  26. O. Wada, “Femtosecond semiconductor-based optoelectronic devices for optical-communication systems,” Opt. Quantum Electron. 32, 453-471 (2000).
    [CrossRef]
  27. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Wilner, and D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878-1883 (2007).
    [CrossRef] [PubMed]
  28. Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
    [CrossRef]
  29. P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005).
    [CrossRef]

2008 (1)

2007 (6)

2006 (8)

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866-5876 (2006).
[CrossRef] [PubMed]

Z. Zhu and D. J. Gauthier, “Nearly transparent SBS slow light in an optical fiber,” Opt. Express 14, 7238-7245 (2006).
[CrossRef] [PubMed]

S. Oda and A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895-7902(2006).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498-8505(2006).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Potential ultra wide slow-light bandwidth enhancement,” Opt. Express 14, 11082-11087 (2006).
[CrossRef] [PubMed]

Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022-12027 (2006).
[CrossRef] [PubMed]

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

2005 (5)

2004 (3)

S. Vorbeck and M. Schneiders, “Cumulative nonlinear phase shift as engineering rule for performance estimation in 160-Gb/s transmission system,” IEEE Photon. Technol. Lett. 16, 2571-2573 (2004).
[CrossRef]

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
[CrossRef]

2000 (2)

J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
[CrossRef]

O. Wada, “Femtosecond semiconductor-based optoelectronic devices for optical-communication systems,” Opt. Quantum Electron. 32, 453-471 (2000).
[CrossRef]

1990 (1)

M. Stern, J. P. Heritage, R. N. Thurston, and S. Tu, “Self-phase modulation and dispersion in high data rate fiber-optic transmission systems,” J. Lightwave Technol. 8, 1009-1016(1990).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Acadmic, 2001).

Andersen, P. A.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

Bayart, D.

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

Bernini, R.

Boyd, R. W.

Claps, R.

Dawes, A. M. C.

Demokan, M. S.

Dimitropoulos, D.

Dong, Y.

Z. Lu, Y. Dong and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871-1877 (2007).
[CrossRef] [PubMed]

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
[CrossRef]

Dur´ecu-Legrand, A.

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

Elbers, J. P.

J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
[CrossRef]

Eyal, A.

Färbert, A.

J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
[CrossRef]

Fazal, I.

Fejer, M. M.

Fischer, G.

J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
[CrossRef]

Gaeta, A.

Gaeta, A. L.

Gauthier, D. J.

Geng, Y.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

Glingener, C.

J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
[CrossRef]

Heritage, J. P.

M. Stern, J. P. Heritage, R. N. Thurston, and S. Tu, “Self-phase modulation and dispersion in high data rate fiber-optic transmission systems,” J. Lightwave Technol. 8, 1009-1016(1990).
[CrossRef]

Herraez, M. G.

Howe, J. V.

Jalali, B.

Jeppesen, P.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

Junker, M.

Kazovsky, L. G.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

Langrock, C.

Lantz, E.

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

Lauterbach, K.-U.

Li, Q.

Li, Z.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
[CrossRef]

Lu, C.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
[CrossRef]

Lu, Z.

Maillotte, H.

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, 1998 (IEEE, 1998), Vol. 1, pp. 475-476.

Marhic, M. E.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

Maruta, A.

Minardo, A.

Mo, J.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
[CrossRef]

Mussot, A.

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

Neifeld, M. A.

Nuccio, S.

Oda, S.

Okawachi, Y.

Pant, R.

Peucheret, C.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

Raghunathan, V.

Scheerer, C.

J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
[CrossRef]

Schneider, T.

Schneiders, M.

S. Vorbeck and M. Schneiders, “Cumulative nonlinear phase shift as engineering rule for performance estimation in 160-Gb/s transmission system,” IEEE Photon. Technol. Lett. 16, 2571-2573 (2004).
[CrossRef]

Sharping, J.

Sharping, J. E.

Shi, Z.

Simonneau, C.

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

Song, K. Y.

Stenner, M. D.

Stern, M.

M. Stern, J. P. Heritage, R. N. Thurston, and S. Tu, “Self-phase modulation and dispersion in high data rate fiber-optic transmission systems,” J. Lightwave Technol. 8, 1009-1016(1990).
[CrossRef]

Sylvestre, T.

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

Thevenaz, L.

Thurston, R. N.

M. Stern, J. P. Heritage, R. N. Thurston, and S. Tu, “Self-phase modulation and dispersion in high data rate fiber-optic transmission systems,” J. Lightwave Technol. 8, 1009-1016(1990).
[CrossRef]

Tokle, T.

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

Tu, S.

M. Stern, J. P. Heritage, R. N. Thurston, and S. Tu, “Self-phase modulation and dispersion in high data rate fiber-optic transmission systems,” J. Lightwave Technol. 8, 1009-1016(1990).
[CrossRef]

Tur, M.

Vorbeck, S.

S. Vorbeck and M. Schneiders, “Cumulative nonlinear phase shift as engineering rule for performance estimation in 160-Gb/s transmission system,” IEEE Photon. Technol. Lett. 16, 2571-2573 (2004).
[CrossRef]

Wada, O.

O. Wada, “Femtosecond semiconductor-based optoelectronic devices for optical-communication systems,” Opt. Quantum Electron. 32, 453-471 (2000).
[CrossRef]

Wang, Y.

J. Sharping, Y. Okawachi, J. V. Howe, C. Xu, Y. Wang, A. Wilner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
[CrossRef]

Willner, A. E.

Wilner, A.

Wilner, A. E.

Wong, K. K.-Y.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

Xu, C.

Yan, L.

Yilmaz, O.

Zadok, A.

Zeni, L.

Zhang, A.

Zhang, B.

Zhang, L.

Zhu, Z.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

J. P. Elbers, A. Färbert, C. Scheerer, C. Glingener, and G. Fischer, “Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems,” IEEE J. Quantum Electron. 6, 276-281 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

A. Mussot, E. Lantz, A. Dur´ecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photon. Technol. Lett. 18, 22-24 (2006).
[CrossRef]

S. Vorbeck and M. Schneiders, “Cumulative nonlinear phase shift as engineering rule for performance estimation in 160-Gb/s transmission system,” IEEE Photon. Technol. Lett. 16, 2571-2573 (2004).
[CrossRef]

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004).
[CrossRef]

P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (12)

J. Sharping, Y. Okawachi, J. V. Howe, C. Xu, Y. Wang, A. Wilner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13, 7872-7877 (2005).
[CrossRef] [PubMed]

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866-5876 (2006).
[CrossRef] [PubMed]

Z. Zhu and D. J. Gauthier, “Nearly transparent SBS slow light in an optical fiber,” Opt. Express 14, 7238-7245 (2006).
[CrossRef] [PubMed]

S. Oda and A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895-7902(2006).
[CrossRef] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,” Opt. Express 14, 8498-8505(2006).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and K.-U. Lauterbach, “Potential ultra wide slow-light bandwidth enhancement,” Opt. Express 14, 11082-11087 (2006).
[CrossRef] [PubMed]

Y. Okawachi, J. E. Sharping, C. Xu, and A. L. Gaeta, “Large tunable optical delays via self-phase modulation and dispersion,” Opt. Express 14, 12022-12027 (2006).
[CrossRef] [PubMed]

Z. Lu, Y. Dong and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15, 1871-1877 (2007).
[CrossRef] [PubMed]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Wilner, and D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878-1883 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764-2777 (2008).
[CrossRef] [PubMed]

I. Fazal, O. Yilmaz, S. Nuccio, B. Zhang, A. E. Wilner, C. Langrock, and M. M. Fejer, “Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion,” Opt. Express 15, 10492-10497 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

O. Wada, “Femtosecond semiconductor-based optoelectronic devices for optical-communication systems,” Opt. Quantum Electron. 32, 453-471 (2000).
[CrossRef]

Other (3)

R. Pant, M. D. Stenner, and M. A. Neifeld, “Distortion, noise, and delay study for self-phase modulation based slow-light system,” in Laser Science, OSA Technical Digest (CD) (Optical Society of America, 2007), paper LWE4.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, 1998 (IEEE, 1998), Vol. 1, pp. 475-476.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Acadmic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

SPM-based slow-light system.

Fig. 2
Fig. 2

Pulse spectrum before (solid) and after (dash) HNLF1 for a pulse with 1 / e intensity half-width T 0 = 50 ps , P 0 = 25 μW , and G 0 = 50 dB .

Fig. 3
Fig. 3

Fractional pulse-delay ( Δ T / T pulse ) and SNR as functions of (a) pulse width T pulse and (b) input gain G 0 for T pulse = 25 ps and input power P 0 = 25 μW .

Fig. 4
Fig. 4

Pulse-broadening-induced ISI for propagation through a SPM-based delay system. (a) Input (solid) and output (dashed) bit streams and (b) output eye diagram (black 0s and red 1s) for a 10 Gbit/s data stream at a duty cycle of 16% using L d D = 342 ps / nm , γ 1 = 11   ( W km ) 1 , γ 2 = 10   ( W km ) 1 , G 0 = 50 dB , and P 0 = 25 μW .

Fig. 5
Fig. 5

Pulse-broadening-induced ISI for propagation through a SPM-based delay system. (a) Input (solid) and output (dashed) bit stream and (b) output eye diagram (black 0s and red 1s) for a 16 Gbit/s data stream at a duty cycle of 25% using L d D = 342 ps / nm , γ 1 = 11   ( W km ) 1 , γ 2 = 10   ( W km ) 1 , G 0 = 50 dB , and P 0 = 25 μW .

Fig. 6
Fig. 6

Bit delay and pulse delay comparison.

Fig. 7
Fig. 7

Optimal delay parameters: (a) bit delay Δ T / T bit and (b) input gain as a function of bit rate (BR) for D c of 16%, 25%, and 50% using P 0 = 25 μW .

Fig. 8
Fig. 8

Slow-light system using an ideal wavelength conversion–reconversion module.

Fig. 9
Fig. 9

Optimal parameters for achieving Δ T / T bit = 1000 : (a)  Δ λ min and (b) dispersive fiber length L max as functions of bit rate BR for D c = 25 % (dashed) and D c = 50 % (solid) and typical dispersion parameter D = 17 ps / km nm .

Fig. 10
Fig. 10

Optimal parameters for achieving Δ T / T bit = 1000 for constrained L d : (a)  Δ λ , (b)  L d , (c)  T out / T pulse as a function of bit rate BR for D c = 25 % (dashed) and 50% (solid) and typical dispersion parameter D = 17 ps / km nm .

Fig. 11
Fig. 11

Dispersion-compensated slow-light system using an ideal wavelength conversion–reconversion module.

Fig. 12
Fig. 12

Optimal parameters for achieving Δ T / T bit = 1000 with dispersion compensation: (a)  Δ λ min and (b) dispersive fiber length L max as functions of bit rate BR for D c = 25 % (dashed) and D c = 50 % (solid) and D = 17 ps / km nm .

Fig. 13
Fig. 13

Optimal parameters for achieving Δ T / T bit = 1000 with dispersion compensation and constrained L d : (a)  Δ λ , (b)  L d , and (c)  T out / T pulse as a function of bit rate BR for D c = 25 % (dash) and D c = 50 % (solid).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Δ ω SPM G 0 P 0 γ L eff Δ ω pulse ,
Δ T = L d D Δ λ ,
E gsd = E g exp ( α L ) Δ ω SPM ,
E f = E g exp ( α L ) Δ ν 1 Δ ω SPM ,
E sd = G 2 E f exp ( α L ) / Δ ω SPM .
E out = G 2 E f Δ ν 2 exp ( α L ) / Δ ω SPM .
P out = E out Δ ν 2 .
P out = G 2 G 0 P 0 T pulse exp ( 2 α L ) Δ ν 1 Δ ν 2 2 Δ ω SPM 2 .
N sd = ( G 0 1 ) h ν 0 n sp G 0 h ν 0 n sp ,
N f = G 0 h ν 0 n sp exp ( α L ) Δ ν 1 .
N out = [ G 2 G 0 h ν 0 n sp exp ( 2 α L ) Δ ν 1 Δ ω SPM + G 2 h ν 0 n sp exp ( α L ) ] Δ ν 2 .
SNR = P out / N out = G 0 P 0 T pulse exp ( α L ) Δ ν 1 Δ ν 2 Δ ω SPM 2 [ G 0 exp ( α L ) Δ ν 1 Δ ω SPM + 1 ] h ν 0 n sp .
SNR = T pulse   exp ( α L ) Δ ν 1 Δ ν 2 G 0 γ 2 L eff 2 Δ ω pulse 2 h ν 0 n sp [ exp ( α L ) Δ ν 1 γ L eff Δ ω pulse + P 0 ] .
Δ T max = L d D λ 0 2 G 0 P 0 γ L eff Δ ω pulse / 2 π c .
T out T pulse = [ 1 + 2 ϕ max 2.76 L d β 2 T pulse 2 + ( 1 + 4 3 3 ϕ max 2 ) ( 2.76 L d β 2 T pulse 2 ) 2 ] 1 / 2 ,
T out T pulse = [ 1 + ( 2.76 L d | β 2 | T pulse 2 ) 2 ] 1 / 2 .
β = β 0 + ( ω ω 0 ) β 1 + ( ω ω 0 ) 2 2 β 2 + ( ω ω 0 ) 3 3 ! β 3 + ,

Metrics