Abstract

Using an array of m×n nonlinear ring resonators (m=1, 3, 5, and n=1, 2, 3) coupled to the upper arm of a Mach–Zehnder interferometer (MZI), we have proposed an all-optical switch structure. Using a 5×3 array, we have shown the possibility of designing an all-optical switching device with a threshold intensity as low as 15mW/m2 and switching window of 35ps. While using m×1 arrays, we have achieved switching windows smaller than 10ps, at the expense of higher switching thresholds, ranging from 37 to 55mW/m2. The whole structure is based on a square lattice photonic crystal of lattice constant a=600nm, formed by rods of radius r=90nm in an air background. The linear rods’ refractive index is taken to be the same as that of Si0.75Ge0.25; i.e., nr=3.6, whereas the nonlinear rod’s refractive index and Kerr index parameter are taken to be n0=1.4 and n2=1014m2/W. The center wavelength at which the nonlinear rings are designed to make the resonance is taken to be λ0=1550nm in free space.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
    [CrossRef]
  2. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
    [CrossRef]
  3. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing using photonic crystals,” Appl. Opt. 40, 2247-2252 (2001).
    [CrossRef]
  4. G. Ma, J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, “Ultrafast all-optical switching in one-dimensional photonic crystal with two defects,” Opt. Express 14, 858-865 (2006).
    [CrossRef] [PubMed]
  5. Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, “High-contrast light-by-light switching and and gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006).
    [CrossRef] [PubMed]
  6. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.
  7. S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
    [CrossRef]
  8. T. P. White, C. M. de Sterke, R. C. Mcphedran, T. Huang, and L. C. Botten “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express 12, 3035-3045 (2004).
    [CrossRef] [PubMed]
  9. H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
    [CrossRef] [PubMed]
  10. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).
    [CrossRef] [PubMed]
  11. Y. D. Wu, T. T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008).
    [CrossRef] [PubMed]
  12. H. J. R. Dutton, Understanding Optical Communications (International Business Machines Corporation, 1998).
  13. S. V. Kartalopoulos, DWDM: Networks, Devices, and Technology (Wiley, 2003).
  14. E. A. Camargo, H. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588-592 (2004).
    [CrossRef] [PubMed]
  15. R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
    [CrossRef]
  16. A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
    [PubMed]
  17. F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, “All-optical switching structure based on a photonic crystal directional coupler,” Opt. Express 12, 161-167 (2004).
    [CrossRef] [PubMed]
  18. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
    [CrossRef]
  19. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
    [CrossRef]
  20. I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
    [CrossRef]
  21. K. Uchiyanma, S. Kawashima, and M. Saruwatari, “Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett. 34, 575-576 (1998).
    [CrossRef]
  22. K. Inoue, K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlog, 2004), pp. 274-277.
  23. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  24. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  26. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media” IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
  27. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]

2008 (1)

2007 (1)

2006 (2)

2005 (1)

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
[CrossRef]

2004 (5)

2003 (2)

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
[CrossRef]

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

2002 (2)

A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
[PubMed]

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

2001 (1)

1998 (1)

K. Uchiyanma, S. Kawashima, and M. Saruwatari, “Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett. 34, 575-576 (1998).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media” IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

Asakawa, K.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Blasco, J.

Botten, L. C.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Bristow, A. D.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Busch, K.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[CrossRef]

Camargo, E. A.

Chen, M. H.

Chong, H. H.

Cojocaru, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Cuesta-Soto, F.

De La Rue, R. M.

de Sterke, C. M.

Dutton, H. J. R.

H. J. R. Dutton, Understanding Optical Communications (International Business Machines Corporation, 1998).

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

Fan, W. H.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Föll, H.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[CrossRef]

Fox, A. M.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Garcia, J.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Hua, Z.

Huang, T.

Ikeda, N.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.

Inoue, K.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.

K. Inoue, K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlog, 2004), pp. 274-277.

Ishikawa, H.

Itoh, M.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
[CrossRef]

Ji, J. R.

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

Kanamoto, K.

Kartalopoulos, S. V.

S. V. Kartalopoulos, DWDM: Networks, Devices, and Technology (Wiley, 2003).

Katouf, R.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
[CrossRef]

Kawashima, S.

K. Uchiyanma, S. Kawashima, and M. Saruwatari, “Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett. 34, 575-576 (1998).
[CrossRef]

Kitagawa, T.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Kitoh, T.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Komikado, T.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
[CrossRef]

Krauss, T. F.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Letartre, X.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Levenson, A.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Lölkes, S.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[CrossRef]

Ma, G.

Magari, K.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Marti, J.

Martinez, A.

Mcphedran, R. C.

Monnier, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Morioka, T.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Nakamura, H.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.

Nakamura, S.

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
[CrossRef]

Nakamura, Y.

Ogawa, I.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Ohkouchi, S.

Ohtaka, K.

K. Inoue, K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlog, 2004), pp. 274-277.

Okumoto, M.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Prather, D. W.

Qiang, Z.

Raineri, F.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Raj, R.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Ramos, F.

Roberts, J. S.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Sanchis, P.

Saruwatari, M.

K. Uchiyanma, S. Kawashima, and M. Saruwatari, “Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett. 34, 575-576 (1998).
[CrossRef]

Seassal, C.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Shake, I.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Sharkawy, A.

Shen, J.

Shi, S.

Shih, T. T.

Skolnick, M. S.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Soref, R. A.

Sugimoto, Y.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.

Suzuki, Y.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tahraoui, A.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Tajima, K.

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
[CrossRef]

Takahashi, M.

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
[CrossRef]

Takara, H.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Tamanuki, T.

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
[CrossRef]

Tanaka, Y.

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.

Tang, S. H.

Uchiyama, K.

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

Uchiyanma, K.

K. Uchiyanma, S. Kawashima, and M. Saruwatari, “Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett. 34, 575-576 (1998).
[CrossRef]

Ueno, Y.

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
[CrossRef]

Umegaki, S.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
[CrossRef]

Viktorovich, P.

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

Watanae, Y.

Wehrspohn, R. B.

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[CrossRef]

Wells, J.-P. R.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

White, T. P.

Whittaker, D. M.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

Wu, Y. D.

Yatagai, T.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
[CrossRef]

Ye, W. M.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media” IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

Yuan, X. D.

Zen, C.

Zhang, Z.

Zhou, W.

Zhu, Z. H.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, “Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,” Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre, and P. Viktorovich, “Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,” Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Electron. Lett. (2)

I. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki, and T. Morioka, “160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,” Electron. Lett. 38, 37-38 (2002).
[CrossRef]

K. Uchiyanma, S. Kawashima, and M. Saruwatari, “Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),” Electron. Lett. 34, 575-576 (1998).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media” IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

Opt. Express (9)

E. A. Camargo, H. H. Chong, and R. M. De La Rue, “2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,” Opt. Express 12, 588-592 (2004).
[CrossRef] [PubMed]

A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048-1059 (2002).
[PubMed]

F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Marti, “All-optical switching structure based on a photonic crystal directional coupler,” Opt. Express 12, 161-167 (2004).
[CrossRef] [PubMed]

G. Ma, J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, “Ultrafast all-optical switching in one-dimensional photonic crystal with two defects,” Opt. Express 14, 858-865 (2006).
[CrossRef] [PubMed]

Z. H. Zhu, W. M. Ye, J. R. Ji, X. D. Yuan, and C. Zen, “High-contrast light-by-light switching and and gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006).
[CrossRef] [PubMed]

T. P. White, C. M. de Sterke, R. C. Mcphedran, T. Huang, and L. C. Botten “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express 12, 3035-3045 (2004).
[CrossRef] [PubMed]

H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanae, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks,” Opt. Express 12, 6606-6614 (2004).
[CrossRef] [PubMed]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007).
[CrossRef] [PubMed]

Y. D. Wu, T. T. Shih, and M. H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 16, 248-257 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno, and K. Tajima, “Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches,” Proc. SPIE 4998, 21-32 (2003).
[CrossRef]

Other (9)

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostruct.: Fundam. Appl. 3, 116-119 (2005).
[CrossRef]

K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH, 2004).
[CrossRef]

H. J. R. Dutton, Understanding Optical Communications (International Business Machines Corporation, 1998).

S. V. Kartalopoulos, DWDM: Networks, Devices, and Technology (Wiley, 2003).

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, and K. Inoue, “Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for all optical switches,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CWP7.

K. Inoue, K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlog, 2004), pp. 274-277.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed optical switch; (b) 2DPHC configuration of the input coupler, formed by rods of radius r and relative permittivity ϵ r in an air background with period of a; (c) 2DPHC configuration of a ring resonator made of Kerr-like nonlinear rods of linear refractive index of n 0 and nonlinear index parameter n 2 ; (d) unit cell of the square lattice PhC.

Fig. 2
Fig. 2

Input/output response of a structure resembling one quarter of the ring resonator shown in Fig. 1c.

Fig. 3
Fig. 3

(a) PhC test structure for tuning the ring resonator dimensions and its refractive index for a desired resonant wavelength; (b) Outputs from ports 1 and 2 in terms of ring refractive index n 0 for R = 4.8 μm , λ 0 = 1550 nm , and I in = 1 mW / m 2 .

Fig. 4
Fig. 4

TE-band structure of 2DPhC formed by rods made of Si 0.75 Ge 0.25 in an air background with parameters given in Table 1.

Fig. 5
Fig. 5

Temporal behavior of the output signals from a simple optical switch made of a MZI structure with a nonlinear upper arm, for (a)  I in = 360 mW / m 2 , (b)  I in = 400 mW / m 2 , and (c)  I in = 440 mW / m 2 .

Fig. 6
Fig. 6

Temporal behavior of the output signals from the optical switch with a single ring resonator of radius R = 4.8 μm for (a)  I in = 60 mW / m 2 and (b)  I in = 75 mW / m 2 .

Fig. 7
Fig. 7

Variations in phase difference between points 1 and 2, as shown by the inset, as a function of I 1 in the upper arm of the MZI switch structure, for the same condition as for Fig. 4.

Fig. 8
Fig. 8

Temporal behavior of the normalized output signals from MZI structures whose upper arms are coupled to arrays of nonlinear ring resonators: (a) ( 2 × 1 ) for I in = 240 mW / m 2 , (b)  ( 4 × 1 ) for input I in = 230 mW / m 2 .

Fig. 9
Fig. 9

Input-output characteristics for a linear MZI whose upper arm is coupled to ( m × n ) arrays of nonlinear ring resonators, where m = 1 , 3, and 5, and n = 1 , 2, and 3.

Fig. 10
Fig. 10

Temporal behavior of the normalized output signals from MZI structures whose upper arms are coupled to arrays of nonlinear ring resonators: (a)  3 × 1 for I in = 55 mW / m 2 , (b)  3 × 2 for I in = 32 mW / m 2 , (c)  3 × 3 for I in = 20 mW / m 2 .

Fig. 11
Fig. 11

Temporal behavior of the normalized output signals from MZI structures whose upper arms are coupled to arrays of nonlinear ring resonators: (a)  5 × 1 for I in = 45 mW / m 2 , (b)  5 × 2 for I in = 30 mW / m 2 , (c)  5 × 3 for I in = 20 mW / m 2 .

Tables (3)

Tables Icon

Table 1 Physical and Geometric Parameters Used in the Numerical Simulation

Tables Icon

Table 2 Effects of Nonlinear Ring Resonator Radius Size on Switching Parameters

Tables Icon

Table 3 Switching Characteristics for Linear MZI Structures Whose Upper Arms Are Coupled to Various ( ( m × n ) ) Arrays of Nonlinear Ring Resonators a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1 ε ( ρ ) [ 2 x 2 + 2 y 2 ] E z ( ρ ) + ( ω c ) 2 E z ( ρ ) = 0 ,
E z ( ρ ) = G A ( k + G ) exp [ j ( k + G ) × ρ ] ,
1 ε ( ρ ) = G ( 1 ε ) G exp [ j ( G · ρ ) ] = G ' ψ ( G ' ) exp [ j ( G ' . ρ ) ] ,
G ' ( k + G ) × ( k + G ) ψ ( G G ' ) A ( k + G ' ) = ( ω c ) 2 A ( k + G ) .
D ( r ) = ε 0 ε ( r ) E ( r ) ε 0 ( ε r + χ ( 3 ) | E | 2 ) E ( r ) = ε 0 ε r E ( r ) + 2 ε 0 η n 2 I E ( r ) ,
μ 0 H x t = E z y ,
μ 0 H y t = E z x ,
ε 0 ε r E z t = H y x H x y .
H x n + 1 2 ( i , j + 2 1 ) = H x n 1 2 ( i , j + 2 1 ) Δ t μ 0 [ E z n ( i , j + 1 ) E z n ( i , j ) Δ y ] ,
H y n + 1 2 ( i + 2 1 , j ) = H y n 1 2 ( i + 2 1 , j ) + Δ t μ 0 [ E z n ( i + 1 , j ) E z n ( i , j ) Δ x ] ,
E z n + 1 ( i , j ) = E z n ( i , j ) + Δ t ε ( i , j ) × [ H y n + 1 2 ( i + 2 1 , j ) H y n + 1 2 ( i 2 1 , j ) Δ x H x n + 1 2 ( i , j + 2 1 ) H x n + 1 2 ( i , j 2 1 ) Δ y ] ,

Metrics