Abstract

An analog Mueller matrix acquisition and preprocessing system (AMMS) was developed for a photopolarimetric-based sensor with 9.112.0μm optical bandwidth, which is the middle infrared wavelength-tunable region of sensor transmitter and “fingerprint” spectral band for chemical–biological (analyte) standoff detection. AMMS facilitates delivery of two alternate polarization-modulated CO2 laser beams onto subject analyte that excite/relax molecular vibrational resonance in its analytic mass, primes the photoelastic-modulation engine of the sensor, establishes optimum throughput radiance per backscattering cross section, acquires Mueller elements modulo two laser beams in hexadecimal format, preprocesses (normalize, subtract, filter) these data, and formats the results into digitized identification metrics. Feed forwarding of formatted Mueller matrix metrics through an optimally trained and validated neural network provides pattern recognition and type classification of interrogated analyte.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Jones, “New calculus for the treatment of optical systems. VII: Properties of the N-matrices,” J. Opt. Soc. Am. 38, 671-685 (1947).
    [CrossRef]
  2. J. D. Jackson, “Plane electromagnetic waves and wave propagation,” in Classical Electrodynamics (Wiley, 1975), pp. 273-278.
  3. R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323-1332 (1980).
    [CrossRef] [PubMed]
  4. J. W. Gorman, Jr., and P. P. Crooker, “Mueller-matrix measurements in a two-component blue-phase mixture,” Phys. Rev. A 31, 910-913 (1985).
    [CrossRef] [PubMed]
  5. Y. Wenyan, “The Mueller scattering matrix of two parallel chiral circular cylinders,” Microw. Opt. Technol. Lett. 11, 78-83 (1996).
    [CrossRef]
  6. M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998).
    [CrossRef]
  7. P. Yang, H. Wei, G. W. Kattawar, Y. X. Hu, D. M. Winker, C. A. Hostetler, and B. A. Baum, “Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase,” Appl. Opt. 42, 4389-4395 (2003).
    [CrossRef] [PubMed]
  8. J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999).
    [CrossRef]
  9. A. A. Kokhanovsky, “Parameterization of the Mueller matrix of oceanic waters,” J. Geophys. Res. 108, 3175 (2003).
    [CrossRef]
  10. E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322-1326 (1985).
    [CrossRef]
  11. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101-103 (2002).
    [CrossRef]
  12. O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
    [CrossRef]
  13. M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402-2404 (2004).
    [CrossRef] [PubMed]
  14. E. Bahar, “Mueller matrices for waves reflected and transmitted through chiral materials: waveguide modal solutions and applications,” J. Opt. Soc. Am. B 24, 1610-1619 (2007).
    [CrossRef]
  15. A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).
  16. A. H. Carrieri, J. R. Bottiger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550-6557 (1998).
    [CrossRef]
  17. A. H. Carrieri, C. J. Schmitt, C. M. Herzinger, and J. O. Jensen, “Computation, visualization and animation of infrared Mueller matrix elements by surfaces that are absorbing and randomly rough,” Appl. Opt. 32, 6264-6269 (1993).
    [CrossRef] [PubMed]
  18. A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
    [CrossRef]
  19. S. M. Haugland, E. Z. Bahar, and A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized IR scattering,” Appl. Opt. 31, 3847-3852 (1992).
    [CrossRef] [PubMed]
  20. A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759-3766 (1999).
    [CrossRef]

2007 (2)

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

E. Bahar, “Mueller matrices for waves reflected and transmitted through chiral materials: waveguide modal solutions and applications,” J. Opt. Soc. Am. B 24, 1610-1619 (2007).
[CrossRef]

2005 (1)

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

1999 (2)

A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759-3766 (1999).
[CrossRef]

J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999).
[CrossRef]

1998 (2)

M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998).
[CrossRef]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550-6557 (1998).
[CrossRef]

1996 (1)

Y. Wenyan, “The Mueller scattering matrix of two parallel chiral circular cylinders,” Microw. Opt. Technol. Lett. 11, 78-83 (1996).
[CrossRef]

1993 (1)

1992 (1)

1985 (2)

J. W. Gorman, Jr., and P. P. Crooker, “Mueller-matrix measurements in a two-component blue-phase mixture,” Phys. Rev. A 31, 910-913 (1985).
[CrossRef] [PubMed]

E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322-1326 (1985).
[CrossRef]

1980 (1)

1947 (1)

Angelsky, O. V.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
[CrossRef]

Anna, S. L.

J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999).
[CrossRef]

Bahar, E.

Bahar, E. Z.

Baum, B. A.

Bottiger, J. R.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550-6557 (1998).
[CrossRef]

R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323-1332 (1980).
[CrossRef] [PubMed]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Cariou, J.

M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998).
[CrossRef]

Carrieri, A. H.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

A. H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy,” Appl. Opt. 38, 3759-3766 (1999).
[CrossRef]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550-6557 (1998).
[CrossRef]

A. H. Carrieri, C. J. Schmitt, C. M. Herzinger, and J. O. Jensen, “Computation, visualization and animation of infrared Mueller matrix elements by surfaces that are absorbing and randomly rough,” Appl. Opt. 32, 6264-6269 (1993).
[CrossRef] [PubMed]

S. M. Haugland, E. Z. Bahar, and A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized IR scattering,” Appl. Opt. 31, 3847-3852 (1992).
[CrossRef] [PubMed]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Crooker, P. P.

J. W. Gorman, Jr., and P. P. Crooker, “Mueller-matrix measurements in a two-component blue-phase mixture,” Phys. Rev. A 31, 910-913 (1985).
[CrossRef] [PubMed]

Das, K. K.

J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999).
[CrossRef]

Floch, M.

M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998).
[CrossRef]

Fry, E. S.

E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322-1326 (1985).
[CrossRef]

R. C. Thompson, J. R. Bottiger, and E. S. Fry, “Measurement of polarized light interactions via the Mueller matrix,” Appl. Opt. 19, 1323-1332 (1980).
[CrossRef] [PubMed]

Gorman, J. W.

J. W. Gorman, Jr., and P. P. Crooker, “Mueller-matrix measurements in a two-component blue-phase mixture,” Phys. Rev. A 31, 910-913 (1985).
[CrossRef] [PubMed]

Haugland, S. M.

S. M. Haugland, E. Z. Bahar, and A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized IR scattering,” Appl. Opt. 31, 3847-3852 (1992).
[CrossRef] [PubMed]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Henry, C. E.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Herzinger, C. M.

A. H. Carrieri, C. J. Schmitt, C. M. Herzinger, and J. O. Jensen, “Computation, visualization and animation of infrared Mueller matrix elements by surfaces that are absorbing and randomly rough,” Appl. Opt. 32, 6264-6269 (1993).
[CrossRef] [PubMed]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Hostetler, C. A.

Hu, Y. X.

Hung, K. C.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

Jackson, J. D.

J. D. Jackson, “Plane electromagnetic waves and wave propagation,” in Classical Electrodynamics (Wiley, 1975), pp. 273-278.

Jensen, J. L.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Jensen, J. O.

A. H. Carrieri, C. J. Schmitt, C. M. Herzinger, and J. O. Jensen, “Computation, visualization and animation of infrared Mueller matrix elements by surfaces that are absorbing and randomly rough,” Appl. Opt. 32, 6264-6269 (1993).
[CrossRef] [PubMed]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Jiao, S.

Jones, R. C.

Kattawar, G. W.

Kokhanovsky, A. A.

A. A. Kokhanovsky, “Parameterization of the Mueller matrix of oceanic waters,” J. Geophys. Res. 108, 3175 (2003).
[CrossRef]

Le Brun, G.

M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998).
[CrossRef]

Lim, P. I.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

Lotrian, J.

M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998).
[CrossRef]

Mackey, J. R.

J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999).
[CrossRef]

McKinley, G. H.

J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999).
[CrossRef]

Owens, D. J.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550-6557 (1998).
[CrossRef]

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Roese, E. S.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

A. H. Carrieri, J. R. Bottiger, D. J. Owens, and E. S. Roese, “Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics,” Appl. Opt. 37, 6550-6557 (1998).
[CrossRef]

Schmidt, K. E.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Schmitt, C. J.

Schultz, J. C.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

Stoica, G.

Talbard, M. V.

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

Thompson, R. C.

Todorovic, M.

Tomka, Y. Y.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
[CrossRef]

Ushenko, A. G.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
[CrossRef]

Ushenko, Y. A.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
[CrossRef]

Ushenko, Y. G.

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
[CrossRef]

Voss, K. J.

E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322-1326 (1985).
[CrossRef]

Wang, L. V.

Wei, H.

Wenyan, Y.

Y. Wenyan, “The Mueller scattering matrix of two parallel chiral circular cylinders,” Microw. Opt. Technol. Lett. 11, 78-83 (1996).
[CrossRef]

Winker, D. M.

Yang, P.

Appl. Opt. (6)

Eur. Phys. J. Appl. Phys. (1)

M. Floch, G. Le Brun, J. Cariou, and J. Lotrian, “Experimental characterization of immersed targets by polar decomposition of the Mueller matrices,” Eur. Phys. J. Appl. Phys. 3, 349-358 (1998).
[CrossRef]

J. Appl. Remote Sens. (1)

A. H. Carrieri, D. J. Owens, E. S. Roese, K. C. Hung, P. I. Lim, J. C. Schultz, J. R. Bottiger, and M. V. Talbard, “Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method,” J. Appl. Remote Sens. 1, 013502 (2007).
[CrossRef]

J. Geophys. Res. (1)

A. A. Kokhanovsky, “Parameterization of the Mueller matrix of oceanic waters,” J. Geophys. Res. 108, 3175 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

O. V. Angelsky, Y. Y. Tomka, A. G. Ushenko, Y. G. Ushenko, and Y. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states,” J. Phys. D 38, 4227-4235 (2005).
[CrossRef]

Limnol. Oceanogr. (1)

E. S. Fry and K. J. Voss, “Measurement of the Mueller matrix for phytoplankton,” Limnol. Oceanogr. 30, 1322-1326 (1985).
[CrossRef]

Meas. Sci. Technol. (1)

J. R. Mackey, K. K. Das, S. L. Anna, and G. H. McKinley, “A compact dual-crystal modulated birefringence-measurement system for microgravity applications,” Meas. Sci. Technol. 10, 946-955 (1999).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Y. Wenyan, “The Mueller scattering matrix of two parallel chiral circular cylinders,” Microw. Opt. Technol. Lett. 11, 78-83 (1996).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

J. W. Gorman, Jr., and P. P. Crooker, “Mueller-matrix measurements in a two-component blue-phase mixture,” Phys. Rev. A 31, 910-913 (1985).
[CrossRef] [PubMed]

Other (2)

J. D. Jackson, “Plane electromagnetic waves and wave propagation,” in Classical Electrodynamics (Wiley, 1975), pp. 273-278.

A. H. Carrieri, D. J. Owens, C. E. Henry, K. E. Schmidt, J. L. Jensen, J. R. Bottiger, J. O. Jensen, C. M. Herzinger, and S. M. Haugland, “Mid-infrared polarized light scattering: applications for the remote detection of chemical and biological contaminations,” Tech. Rep. CRDEC-TR-318 (Chemical Research, Development, and Engineering Center, Aberdeen Proving Ground, Md., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reference frequencies synthesizer module of the analog Mueller matrix system (AMMS). This circuit generates two primary and six overtone pure-form coherent sinusoidal frequencies from reference pulses output by the driven photoelastic-modulation engine of the differential-absorption Mueller matrix spectroscopy (DIAMMS) sensor. These waveforms are delivered to the phase correlation module of the AMMS, Fig. 3.

Fig. 2
Fig. 2

Scattergram intensity regulation and control module is an electromechanical system that automatically maintains constant magnitude of optical backscattering intensity as the photoelastic-modulation engine of the DIAMMS sensor permutes to one of four optical configurations.

Fig. 3
Fig. 3

Phase correlation module of the AMMS provides eight Mueller (M) matrix elements as analog signals per fundamental/overtone frequency assignments in the detected scattergram voltage waveform output by the DIAMMS sensor. The M-element outputs are proportional to the dot product between the detected scattergram signal and each of the reference frequencies delivered via the scattergram intensity regulation and control module, Fig. 1.

Fig. 4
Fig. 4

Data digitization and computer interface module digitizes the Mueller matrix analog signals from the phase correlation module, Fig. 3, and transmits these data to the DIAMMS sensor central computer. The logic control module is instrumental in coordinating sequences of command and status signals among computer, digitizer, and the scattergram intensity regulation and control module, Fig. 2.

Fig. 5
Fig. 5

Analog Mueller matrix data acquisition system (AMMS). The gold mainframe comprises Modules 1, 3, and 4 of the AMMS. The mainframe comprises nine phase-sensitive detectors tuned to a fundamental or overtone frequency of the photoelastic-modulation engine of the DIAMMS sensor. Each phase-sensitive detector filters one of 15 non- [ 1 , 1 ] phase-sensitive Mueller matrix elements from the incoming scattergram signal. The white box between the AMMS mainframe and the oscilloscope conditions and measures the phase-insensitive [ 1 , 1 ] Mueller element separately (readout on voltmeter). The bottom trace on the oscilloscope is the scattergram and the top trace is its Fourier transformation.

Fig. 6
Fig. 6

At right, the DIAMMS sensor graphical user interface on the computer screen. The electronic console below the computer screen is AMMS Module 2. Regulation of the optical power of backscattering from the incoming scattergram intensity voltage waveform is done here. Once optimum power is attained M-element acquisition proceeds from Module 4. At left, partial view of the DAIMMS sensor: gold annulus with white rim is the belt-driven variable neutral density filter optic of Fig. 2; red cylinder is the HgCdTe cryogenic detector and generator of scattergram data relayed to the AMMS mainframe (Fig. 5).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = I d c + I a c ( n J n cos ν 1 ± k J k cos ν 2 ) + I a c ε ( J n cos n ν 1 , J k cos ν 2 k , J n J k cos n ν 1 cos k ν 2 ) ,
M i j out = 1 τ t τ t [ sin ω ref ( i j ) ξ + φ ] i ( ξ ) d ξ ,

Metrics