Abstract

A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4mm and wavelengths down to 750μm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1  line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7  line pairs/mm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
    [CrossRef]
  2. C. Brückner, S. Riehemann, G. Notni, and A. Tünnermann, “Optimized THz systems for imaging and spectroscopic applications,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006. IRMMW-THz 2006, X. C. Shen, ed. (IEEE, 2006), p. 36.
    [CrossRef] [PubMed]
  3. B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
    [CrossRef] [PubMed]
  4. P. F. Goldsmith, Quasioptical Systems (IEEE, 1998).
    [CrossRef]
  5. C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
    [CrossRef]
  6. ZEMAX Optical Design Program User's Guide (Focus Software Inc., 2007).
  7. G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering, Vol. 11, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 125-200.
  8. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379-1386 (2004).
    [CrossRef]
  9. C. Wild, “Diamond optical components,” in Fraunhofer IAF Annual Report (2004), http://www.iaf.fraunhofer.de/pdf/jahresbericht-2004/diamond-optical-comp.pdf.
  10. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
    [CrossRef]
  11. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74-83 (1999).
    [CrossRef]
  12. B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
    [CrossRef]
  13. D. You and P. H. Bucksbaum, “Propagation of half-cycle far infrared pulses,” J. Opt. Soc. Am. B 14, 1651-1655 (1997).
    [CrossRef]
  14. S. Hunsche, S. Feng, H. G. Winful, A. Leitensdorfer, M. C. Nuss, and E. P. Ippen, “Spatiotemporal focusing of single-cycle light pulses,” J. Opt. Soc. Am. A 16, 2025-2028 (1999).
    [CrossRef]
  15. Zeon Corporations, Zeonex Product Brochure, http://www.zeonchemicals.com/zeonex.aspx.
  16. W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
    [CrossRef]
  17. C. Brückner, G. Notni, and A. Tünnermann, “Optimal arrangement of 90° off-axis parabolic mirrors in THz setups,” Opt. Int. J. Light Electron. Opt. doi:10.1016/j.ijleo.2008.05.024 (2008), available online 13 August 2008.
    [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  19. W. Singer, M. Totzeck, and H. Gross, “The Abbe theory of imaging,” in Handbook of Optical Systems Vol. 2: Physical Image Formation, H. Gross, ed. (Wiley-VCH, 2005), pp. 239-281.
  20. T. D. Milster, “Transfer function-diffraction and interferometry,” in OPTI 505 Spring 2002, (University of Arizona, 2002), http://www.optics.arizona.edu/Milster/505%20Lecture_2002/opti_505_lec_spring_2002.htm.
  21. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779-789 (2007).
    [CrossRef] [PubMed]
  22. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

2008 (1)

C. Brückner, G. Notni, and A. Tünnermann, “Optimal arrangement of 90° off-axis parabolic mirrors in THz setups,” Opt. Int. J. Light Electron. Opt. doi:10.1016/j.ijleo.2008.05.024 (2008), available online 13 August 2008.
[CrossRef]

2007 (3)

2006 (2)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

2005 (1)

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
[CrossRef]

2004 (1)

2002 (1)

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

1999 (2)

1997 (1)

Abbott, D.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
[CrossRef]

Atad-Ettedgui, E.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Beigang, R.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

Brückner, C.

C. Brückner, G. Notni, and A. Tünnermann, “Optimal arrangement of 90° off-axis parabolic mirrors in THz setups,” Opt. Int. J. Light Electron. Opt. doi:10.1016/j.ijleo.2008.05.024 (2008), available online 13 August 2008.
[CrossRef]

C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779-789 (2007).
[CrossRef] [PubMed]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
[CrossRef] [PubMed]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

C. Brückner, S. Riehemann, G. Notni, and A. Tünnermann, “Optimized THz systems for imaging and spectroscopic applications,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006. IRMMW-THz 2006, X. C. Shen, ed. (IEEE, 2006), p. 36.
[CrossRef] [PubMed]

Bucksbaum, P. H.

Dai, J.

Duncan, W.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Feng, S.

Ferguson, B.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
[CrossRef]

Goldsmith, P. F.

P. F. Goldsmith, Quasioptical Systems (IEEE, 1998).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Grischkowsky, D.

Gross, H.

W. Singer, M. Totzeck, and H. Gross, “The Abbe theory of imaging,” in Handbook of Optical Systems Vol. 2: Physical Image Formation, H. Gross, ed. (Wiley-VCH, 2005), pp. 239-281.

Gürtler, A.

Helm, H.

Henry, D.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Hunsche, S.

Ippen, E. P.

Jellema, W.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Jepsen, P. U.

Käsebier, T.

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

Kley, E.-B.

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

Lawrence, G. N.

G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering, Vol. 11, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 125-200.

Leitensdorfer, A.

Limpert, J.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

Matthäus, G.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
[CrossRef]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
[CrossRef] [PubMed]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

Mickan, S. P.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
[CrossRef]

Milster, T. D.

T. D. Milster, “Transfer function-diffraction and interferometry,” in OPTI 505 Spring 2002, (University of Arizona, 2002), http://www.optics.arizona.edu/Milster/505%20Lecture_2002/opti_505_lec_spring_2002.htm.

Müller, R.

Murphy, J. A.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Nolte, S.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
[CrossRef]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
[CrossRef] [PubMed]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

Notni, G.

C. Brückner, G. Notni, and A. Tünnermann, “Optimal arrangement of 90° off-axis parabolic mirrors in THz setups,” Opt. Int. J. Light Electron. Opt. doi:10.1016/j.ijleo.2008.05.024 (2008), available online 13 August 2008.
[CrossRef]

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
[CrossRef]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
[CrossRef] [PubMed]

C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779-789 (2007).
[CrossRef] [PubMed]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

C. Brückner, S. Riehemann, G. Notni, and A. Tünnermann, “Optimized THz systems for imaging and spectroscopic applications,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006. IRMMW-THz 2006, X. C. Shen, ed. (IEEE, 2006), p. 36.
[CrossRef] [PubMed]

Nuss, M. C.

O'Sullivan, C.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Pradarutti, B.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
[CrossRef]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
[CrossRef] [PubMed]

C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779-789 (2007).
[CrossRef] [PubMed]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

Rainsford, T.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
[CrossRef]

Riehemann, S.

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
[CrossRef]

C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779-789 (2007).
[CrossRef] [PubMed]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
[CrossRef] [PubMed]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

C. Brückner, S. Riehemann, G. Notni, and A. Tünnermann, “Optimized THz systems for imaging and spectroscopic applications,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006. IRMMW-THz 2006, X. C. Shen, ed. (IEEE, 2006), p. 36.
[CrossRef] [PubMed]

Schreiber, T.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

Singer, W.

W. Singer, M. Totzeck, and H. Gross, “The Abbe theory of imaging,” in Handbook of Optical Systems Vol. 2: Physical Image Formation, H. Gross, ed. (Wiley-VCH, 2005), pp. 239-281.

Steinkopf, R.

Stenzel, O.

Torosyan, G.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

Totzeck, M.

W. Singer, M. Totzeck, and H. Gross, “The Abbe theory of imaging,” in Handbook of Optical Systems Vol. 2: Physical Image Formation, H. Gross, ed. (Wiley-VCH, 2005), pp. 239-281.

Trappe, N.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Tünnermann, A.

C. Brückner, G. Notni, and A. Tünnermann, “Optimal arrangement of 90° off-axis parabolic mirrors in THz setups,” Opt. Int. J. Light Electron. Opt. doi:10.1016/j.ijleo.2008.05.024 (2008), available online 13 August 2008.
[CrossRef]

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
[CrossRef]

C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, “Broadband antireflective surface-relief structure for THz optics,” Opt. Express 15, 779-789 (2007).
[CrossRef] [PubMed]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for Terahertz imaging,” Opt. Express 15, 17652-17660 (2007).
[CrossRef] [PubMed]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

C. Brückner, S. Riehemann, G. Notni, and A. Tünnermann, “Optimized THz systems for imaging and spectroscopic applications,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006. IRMMW-THz 2006, X. C. Shen, ed. (IEEE, 2006), p. 36.
[CrossRef] [PubMed]

van de Stadt, H.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Wild, C.

C. Wild, “Diamond optical components,” in Fraunhofer IAF Annual Report (2004), http://www.iaf.fraunhofer.de/pdf/jahresbericht-2004/diamond-optical-comp.pdf.

Winful, H. G.

Winnewisser, C.

Withayachumnankul, W.

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
[CrossRef]

Withington, S.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

Yassin, G.

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

You, D.

Zhang, J.

Zhang, W.

Appl. Phys. B (1)

B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Electrooptical sampling of ultrashort THz pulses by fs-laser pulses at 1060 nm,” Appl. Phys. B 85, 59-62 (2006).
[CrossRef]

Electron. Lett. (1)

W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, (2005).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

C. O'Sullivan, E. Atad-Ettedgui, W. Duncan, D. Henry, W. Jellema, J. A. Murphy, N. Trappe, H. van de Stadt, S. Withington, and G. Yassin, “Far-infrared optics design and verification,” Int. J. Infrared Millim. Waves 23, 1029-1045 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Advanced analysis concepts for terahertz time domain imaging,” Opt. Commun. 279, 248-254(2007).
[CrossRef]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261, 114-117 (2006).
[CrossRef]

Opt. Express (2)

Opt. Int. J. Light Electron. Opt. (1)

C. Brückner, G. Notni, and A. Tünnermann, “Optimal arrangement of 90° off-axis parabolic mirrors in THz setups,” Opt. Int. J. Light Electron. Opt. doi:10.1016/j.ijleo.2008.05.024 (2008), available online 13 August 2008.
[CrossRef]

Other (10)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

W. Singer, M. Totzeck, and H. Gross, “The Abbe theory of imaging,” in Handbook of Optical Systems Vol. 2: Physical Image Formation, H. Gross, ed. (Wiley-VCH, 2005), pp. 239-281.

T. D. Milster, “Transfer function-diffraction and interferometry,” in OPTI 505 Spring 2002, (University of Arizona, 2002), http://www.optics.arizona.edu/Milster/505%20Lecture_2002/opti_505_lec_spring_2002.htm.

P. F. Goldsmith, Quasioptical Systems (IEEE, 1998).
[CrossRef]

C. Brückner, S. Riehemann, G. Notni, and A. Tünnermann, “Optimized THz systems for imaging and spectroscopic applications,” in Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006. IRMMW-THz 2006, X. C. Shen, ed. (IEEE, 2006), p. 36.
[CrossRef] [PubMed]

C. Wild, “Diamond optical components,” in Fraunhofer IAF Annual Report (2004), http://www.iaf.fraunhofer.de/pdf/jahresbericht-2004/diamond-optical-comp.pdf.

ZEMAX Optical Design Program User's Guide (Focus Software Inc., 2007).

G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering, Vol. 11, R. R. Shannon and J. C. Wyant, eds. (Academic, 1992), pp. 125-200.

C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, and A. Tünnermann, “Broadband antireflective structures for the THz spectral range fabricated on high resistive float zone silicon presented at the 33rd IRMMW- and 16th THz Electronics Conference (IRMMW-THz 2008), Pasadena, California, USA, 15-19 September 2008.

Zeon Corporations, Zeonex Product Brochure, http://www.zeonchemicals.com/zeonex.aspx.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Spectral content of the THz pulse. The peak frequency of the spectral distribution is at 0.3581 THz ( 838. μm wavelength). The center of gravity frequency is at 0.4557 THz ( 658 μm wavelength).

Fig. 2
Fig. 2

Refractive index and extinction coefficient of ZEONEX E48R (left) and decay of the electric field amplitude on transmission through a 12.4 mm thick ZEONEX E48R sample (right).

Fig. 3
Fig. 3

Complete quasi-optical system of the THz time domain imaging system.

Fig. 4
Fig. 4

Illumination path and spot diagram for a wavelength of 750 μm and NA of 0.3.

Fig. 5
Fig. 5

Gaussian beam profile in the focus of the illumination optics computed with ZEMAX.

Fig. 6
Fig. 6

Imaging path with spot diagram for a wavelength of 750 μm and NA of 0.4.

Fig. 7
Fig. 7

Slit target (left) and wire target (right).

Fig. 8
Fig. 8

Resolution of wires. Left, comparison of the time domain signal for the wires scanned horizontally and vertically. Right, comparison of the horizontally scanned wires temporal and spectral.

Fig. 9
Fig. 9

Resolution of slits. Left, comparison of the time domain signal for the slits scanned horizontally and vertically. Right, comparison of the horizontally scanned slits temporal and spectral.

Fig. 10
Fig. 10

Coherent FFT LSF (left) and coherent FFT ESF (right) of the imaging system for the field point ( x = 0 , y = 0.396 mm ) computed with ZEMAX.

Fig. 11
Fig. 11

Resolution of line gratings of different spatial frequency analyzed for pixel 4. (a) Time domain analysis of the pulse maximum. (b)–(d) Spectral analysis for the wavelengths of 3072, 658 (center of gravity wavelength), and 297 μm . The curves for the single spatial frequencies are shifted in the y direction for the sake of clarity.

Fig. 12
Fig. 12

FFT MTF computed with ZEMAX for the field point (0, 0.396 mm ) in image space. The solid curves show the tangential MTF (T), the dashed curves show the sagittal MTF (S). The black lines show the diffraction limit at the respective wavelengths.

Fig. 13
Fig. 13

Left, resolution of line gratings of different spatial frequency for pixel 8 on time domain analysis of the pulse maximum. Right, FFT MTF computed with ZEMAX for the field point (0, 2.775 mm ) (corresponding to pixel 8). The solid curves show the tangential MTF (T), the dashed curves show the sagittal MTF (S). The black lines show the diffraction limit.

Fig. 14
Fig. 14

Siemens star (chrome on ZEONEX). The bar shows the normalized transmitted amplitude on the analysis of the pulse maximum of the time domain signal. The detected polarization direction was horizontal. The boundary frequency is 0.7 LP / mm .

Tables (4)

Tables Icon

Table 1 Frequency Dependent Divergence Angle for a Gaussian Beam Waist of 1.5 mm

Tables Icon

Table 2 Width of the LSF, Wires Scanned Horizontally

Tables Icon

Table 3 Width of the LSF, Slits Scanned Horizontally

Tables Icon

Table 4 Limit Resolution Determined by the Measurement and Comparison to ZEMAX

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = f 2 / f 1 = w 0 / w 0 ,
f CG = i = 1 n [ f i E ^ ( f i ) Δ f i ] i = 1 n [ E ^ ( f i ) Δ f i ] ,

Metrics