Abstract

Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near λ. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Juarez, M. Cywiak, B. Barrientos, and J. M. Flores, “Three Gaussian beam heterodyne interferometer for surface profiling,” Opt. Commun. 268, 209-214 (2006).
    [CrossRef]
  2. T. Kikukawa and H. Utsunomiya, “Scanning probe microscope observation of recorded marks in phase change disks,” Microsc. Microanal. 7, 363-367 (2001).
    [CrossRef]
  3. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14, 4452-4458 (2006).
    [CrossRef]
  4. M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).
  5. T. Choi and T. D. Milster, “Change in data marks and groove structures of compact recordable disks in response to a high power laser beam,” Opt. Eng. 45, 064302 (2006).
  6. J. H. Coombs and A. H. M. Holtslag, “Scanning optical microscopy: a powerful tool in optical recording,” Proc. SPIE 1499, 6-20 (1991).
  7. T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).
  8. B. A. Sexton and G. F. Cotterill, “Scanning tunneling microscopy of compact disk surfaces,” J. Vac. Sci. Technol. A 7, 2734-2740 (1989).
    [CrossRef]
  9. M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, and K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296-9303(1997).
  10. B. Wolfring, T. Weber, T. Mueller-Wirts, and M. Mansuripur, “Versatest-I, a versatile polychromatic dynamic testbed for optical disks,” Proc. SPIE 3806, 2-10 (1999).
  11. J. Butty, D. Kraehenbuehl, and B. J. Bartholomeusz, “Methods for characterization of phase change optical discs,” Proc. SPIE 3806, 76-83 (1999).
  12. Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).
  13. W. Ulf, “Local track pitch measuring apparatus and method,” U.S. patent 2004081048 (2004), pp. 1-6.
  14. R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).
  15. D. A. Chernoff, J. D. Lohr, D. Hansen, and M. Lines, “High precision calibration of a scanning probe microscope (SPM) for pitch and overlay measurements,” Proc. SPIE 3050, 243-249(1997).
  16. R. L. Wilkinson and J. H. Rilum, “DVD Mastering using dye polymer media,” Proc. SPIE 3109, 160-166 (1997).
  17. C. S. Cook, D. A. Chernoff, and D. L. Burkhead, “Automated analysis of data mark microstructure of various media in the optical disc industry,” Proc. SPIE 4090, 16-25 (2000).
  18. D. L. Burkhead and D. A. Chernoff, “AFM analysis of wobble amplitude,” in International Symposium on Optical Memory and Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, 2002), pp. 359-361.
  19. L. Juarez, M. Cywiak, M. Servín, and J. M. Flores, “Three Gaussian beam interferometric profilometer applied to the characterization of an optical flat,” Opt. Express 15, 5277-5287 (2007).
    [CrossRef]
  20. J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.
  21. A. Bartoli, P. Poggi, F. Quercioli, and B. Tiribilli, “Fast one-dimensional profilometer with a compact disc pickup,” Appl. Opt. 40, 1044-1048 (2001).

2007 (1)

2006 (3)

L. Juarez, M. Cywiak, B. Barrientos, and J. M. Flores, “Three Gaussian beam heterodyne interferometer for surface profiling,” Opt. Commun. 268, 209-214 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14, 4452-4458 (2006).
[CrossRef]

T. Choi and T. D. Milster, “Change in data marks and groove structures of compact recordable disks in response to a high power laser beam,” Opt. Eng. 45, 064302 (2006).

2001 (3)

T. Kikukawa and H. Utsunomiya, “Scanning probe microscope observation of recorded marks in phase change disks,” Microsc. Microanal. 7, 363-367 (2001).
[CrossRef]

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

A. Bartoli, P. Poggi, F. Quercioli, and B. Tiribilli, “Fast one-dimensional profilometer with a compact disc pickup,” Appl. Opt. 40, 1044-1048 (2001).

2000 (1)

C. S. Cook, D. A. Chernoff, and D. L. Burkhead, “Automated analysis of data mark microstructure of various media in the optical disc industry,” Proc. SPIE 4090, 16-25 (2000).

1999 (3)

B. Wolfring, T. Weber, T. Mueller-Wirts, and M. Mansuripur, “Versatest-I, a versatile polychromatic dynamic testbed for optical disks,” Proc. SPIE 3806, 2-10 (1999).

J. Butty, D. Kraehenbuehl, and B. J. Bartholomeusz, “Methods for characterization of phase change optical discs,” Proc. SPIE 3806, 76-83 (1999).

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

1998 (1)

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

1997 (3)

D. A. Chernoff, J. D. Lohr, D. Hansen, and M. Lines, “High precision calibration of a scanning probe microscope (SPM) for pitch and overlay measurements,” Proc. SPIE 3050, 243-249(1997).

R. L. Wilkinson and J. H. Rilum, “DVD Mastering using dye polymer media,” Proc. SPIE 3109, 160-166 (1997).

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, and K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296-9303(1997).

1991 (2)

J. H. Coombs and A. H. M. Holtslag, “Scanning optical microscopy: a powerful tool in optical recording,” Proc. SPIE 1499, 6-20 (1991).

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

1989 (1)

B. A. Sexton and G. F. Cotterill, “Scanning tunneling microscopy of compact disk surfaces,” J. Vac. Sci. Technol. A 7, 2734-2740 (1989).
[CrossRef]

Anderson, R.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Barrientos, B.

L. Juarez, M. Cywiak, B. Barrientos, and J. M. Flores, “Three Gaussian beam heterodyne interferometer for surface profiling,” Opt. Commun. 268, 209-214 (2006).
[CrossRef]

Bartholomeusz, B. J.

J. Butty, D. Kraehenbuehl, and B. J. Bartholomeusz, “Methods for characterization of phase change optical discs,” Proc. SPIE 3806, 76-83 (1999).

Bartlett, C.

Bartoli, A.

Bates, K.

Best, M. E.

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

Bletscher, W.

Burkhead, D. L.

C. S. Cook, D. A. Chernoff, and D. L. Burkhead, “Automated analysis of data mark microstructure of various media in the optical disc industry,” Proc. SPIE 4090, 16-25 (2000).

D. L. Burkhead and D. A. Chernoff, “AFM analysis of wobble amplitude,” in International Symposium on Optical Memory and Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, 2002), pp. 359-361.

Butty, J.

J. Butty, D. Kraehenbuehl, and B. J. Bartholomeusz, “Methods for characterization of phase change optical discs,” Proc. SPIE 3806, 76-83 (1999).

Carriere, J.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Cheng, L.

Chernoff, D. A.

C. S. Cook, D. A. Chernoff, and D. L. Burkhead, “Automated analysis of data mark microstructure of various media in the optical disc industry,” Proc. SPIE 4090, 16-25 (2000).

D. A. Chernoff, J. D. Lohr, D. Hansen, and M. Lines, “High precision calibration of a scanning probe microscope (SPM) for pitch and overlay measurements,” Proc. SPIE 3050, 243-249(1997).

D. L. Burkhead and D. A. Chernoff, “AFM analysis of wobble amplitude,” in International Symposium on Optical Memory and Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, 2002), pp. 359-361.

Choi, J.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Choi, T.

T. Choi and T. D. Milster, “Change in data marks and groove structures of compact recordable disks in response to a high power laser beam,” Opt. Eng. 45, 064302 (2006).

Chung, C. S.

Cook, C. S.

C. S. Cook, D. A. Chernoff, and D. L. Burkhead, “Automated analysis of data mark microstructure of various media in the optical disc industry,” Proc. SPIE 4090, 16-25 (2000).

Coombs, J. H.

J. H. Coombs and A. H. M. Holtslag, “Scanning optical microscopy: a powerful tool in optical recording,” Proc. SPIE 1499, 6-20 (1991).

Cotterill, G. F.

B. A. Sexton and G. F. Cotterill, “Scanning tunneling microscopy of compact disk surfaces,” J. Vac. Sci. Technol. A 7, 2734-2740 (1989).
[CrossRef]

Cywiak, M.

L. Juarez, M. Cywiak, M. Servín, and J. M. Flores, “Three Gaussian beam interferometric profilometer applied to the characterization of an optical flat,” Opt. Express 15, 5277-5287 (2007).
[CrossRef]

L. Juarez, M. Cywiak, B. Barrientos, and J. M. Flores, “Three Gaussian beam heterodyne interferometer for surface profiling,” Opt. Commun. 268, 209-214 (2006).
[CrossRef]

Dixson, R. G.

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

Ebina, A.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Erwin, J. K.

Flores, J. M.

L. Juarez, M. Cywiak, M. Servín, and J. M. Flores, “Three Gaussian beam interferometric profilometer applied to the characterization of an optical flat,” Opt. Express 15, 5277-5287 (2007).
[CrossRef]

L. Juarez, M. Cywiak, B. Barrientos, and J. M. Flores, “Three Gaussian beam heterodyne interferometer for surface profiling,” Opt. Commun. 268, 209-214 (2006).
[CrossRef]

Fu, J.

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

Gerber, R. E.

Goodman, T. D.

Hansen, D.

D. A. Chernoff, J. D. Lohr, D. Hansen, and M. Lines, “High precision calibration of a scanning probe microscope (SPM) for pitch and overlay measurements,” Proc. SPIE 3050, 243-249(1997).

Holtslag, A. H. M.

J. H. Coombs and A. H. M. Holtslag, “Scanning optical microscopy: a powerful tool in optical recording,” Proc. SPIE 1499, 6-20 (1991).

Horiguchi, T.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Horikawa, Y.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Iwata, K.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Juarez, L.

L. Juarez, M. Cywiak, M. Servín, and J. M. Flores, “Three Gaussian beam interferometric profilometer applied to the characterization of an optical flat,” Opt. Express 15, 5277-5287 (2007).
[CrossRef]

L. Juarez, M. Cywiak, B. Barrientos, and J. M. Flores, “Three Gaussian beam heterodyne interferometer for surface profiling,” Opt. Commun. 268, 209-214 (2006).
[CrossRef]

Karis, T. E.

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

Kashihara, Y.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Khulbe, P.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Kikukawa, T.

T. Kikukawa and H. Utsunomiya, “Scanning probe microscope observation of recorded marks in phase change disks,” Microsc. Microanal. 7, 363-367 (2001).
[CrossRef]

Kim, S. G.

Kim, T.

Konada, T.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Köning, R.

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

Kraehenbuehl, D.

J. Butty, D. Kraehenbuehl, and B. J. Bartholomeusz, “Methods for characterization of phase change optical discs,” Proc. SPIE 3806, 76-83 (1999).

Lee, S. K.

Li, L.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Lin, I. C.

Lin, S. K.

Lines, M.

D. A. Chernoff, J. D. Lohr, D. Hansen, and M. Lines, “High precision calibration of a scanning probe microscope (SPM) for pitch and overlay measurements,” Proc. SPIE 3050, 243-249(1997).

Logan, J. A.

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

Lohr, J. D.

D. A. Chernoff, J. D. Lohr, D. Hansen, and M. Lines, “High precision calibration of a scanning probe microscope (SPM) for pitch and overlay measurements,” Proc. SPIE 3050, 243-249(1997).

Lyerla, J. R.

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

Lynch, R. T.

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

Mansuripur, M.

B. Wolfring, T. Weber, T. Mueller-Wirts, and M. Mansuripur, “Versatest-I, a versatile polychromatic dynamic testbed for optical disks,” Proc. SPIE 3806, 2-10 (1999).

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, and K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296-9303(1997).

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

McCormack, R. P.

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

Milster, T. D.

T. Choi and T. D. Milster, “Change in data marks and groove structures of compact recordable disks in response to a high power laser beam,” Opt. Eng. 45, 064302 (2006).

Morishita, N.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Mueller-Wirts, T.

B. Wolfring, T. Weber, T. Mueller-Wirts, and M. Mansuripur, “Versatest-I, a versatile polychromatic dynamic testbed for optical disks,” Proc. SPIE 3806, 2-10 (1999).

Nagai, K.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Narayan, R.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Noda, C.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Peng, C.

M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, and K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Appl. Opt. 36, 9296-9303(1997).

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Poggi, P.

Postek, M. T.

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

Quercioli, F.

Renegar, B. T.

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

Rilum, J. H.

R. L. Wilkinson and J. H. Rilum, “DVD Mastering using dye polymer media,” Proc. SPIE 3109, 160-166 (1997).

Sasaki, H.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Sasaki, Y.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Sato, H.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Servín, M.

Sexton, B. A.

B. A. Sexton and G. F. Cotterill, “Scanning tunneling microscopy of compact disk surfaces,” J. Vac. Sci. Technol. A 7, 2734-2740 (1989).
[CrossRef]

Tanaka, M.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Tiribilli, B.

Tsai, D. P.

Tsai, V. W.

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

Ulf, W.

W. Ulf, “Local track pitch measuring apparatus and method,” U.S. patent 2004081048 (2004), pp. 1-6.

Umezawa, T.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Utsunomiya, H.

T. Kikukawa and H. Utsunomiya, “Scanning probe microscope observation of recorded marks in phase change disks,” Microsc. Microanal. 7, 363-367 (2001).
[CrossRef]

Vorburger, T. V.

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

Watabe, K.

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

Weber, T.

B. Wolfring, T. Weber, T. Mueller-Wirts, and M. Mansuripur, “Versatest-I, a versatile polychromatic dynamic testbed for optical disks,” Proc. SPIE 3806, 2-10 (1999).

Wilkinson, R. L.

R. L. Wilkinson and J. H. Rilum, “DVD Mastering using dye polymer media,” Proc. SPIE 3109, 160-166 (1997).

Wolfring, B.

B. Wolfring, T. Weber, T. Mueller-Wirts, and M. Mansuripur, “Versatest-I, a versatile polychromatic dynamic testbed for optical disks,” Proc. SPIE 3806, 2-10 (1999).

Yamaguchi, M.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

Yeh, W-H.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Appl. Opt. (2)

J. Microsc. (Oxford) (1)

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, and T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. (Oxford) 194, 552-557 (1998).

J. Vac. Sci. Technol. A (1)

B. A. Sexton and G. F. Cotterill, “Scanning tunneling microscopy of compact disk surfaces,” J. Vac. Sci. Technol. A 7, 2734-2740 (1989).
[CrossRef]

Microsc. Microanal. (1)

T. Kikukawa and H. Utsunomiya, “Scanning probe microscope observation of recorded marks in phase change disks,” Microsc. Microanal. 7, 363-367 (2001).
[CrossRef]

Opt. Commun. (1)

L. Juarez, M. Cywiak, B. Barrientos, and J. M. Flores, “Three Gaussian beam heterodyne interferometer for surface profiling,” Opt. Commun. 268, 209-214 (2006).
[CrossRef]

Opt. Eng. (1)

T. Choi and T. D. Milster, “Change in data marks and groove structures of compact recordable disks in response to a high power laser beam,” Opt. Eng. 45, 064302 (2006).

Opt. Express (2)

Proc. SPIE (9)

J. H. Coombs and A. H. M. Holtslag, “Scanning optical microscopy: a powerful tool in optical recording,” Proc. SPIE 1499, 6-20 (1991).

T. E. Karis, M. E. Best, J. A. Logan, J. R. Lyerla, R. T. Lynch, and R. P. McCormack, “Verification of tracking servo signal simulation from scanning tunneling microscope surface profiles,” Proc. SPIE 1499, 366-376 (1991).

B. Wolfring, T. Weber, T. Mueller-Wirts, and M. Mansuripur, “Versatest-I, a versatile polychromatic dynamic testbed for optical disks,” Proc. SPIE 3806, 2-10 (1999).

J. Butty, D. Kraehenbuehl, and B. J. Bartholomeusz, “Methods for characterization of phase change optical discs,” Proc. SPIE 3806, 76-83 (1999).

Y. Kashihara, N. Morishita, K. Watabe, C. Noda, K. Iwata, M. Tanaka, K. Nagai, and H. Sato, “Simulation study for high density optical disk systems,” Proc. SPIE 4342, 524-531 (2001).

R. Köning, R. G. Dixson, J. Fu, B. T. Renegar, T. V. Vorburger, V. W. Tsai, and M. T. Postek, “Step height metrology for data storage applications,” Proc. SPIE 3806, 21-29 (1999).

D. A. Chernoff, J. D. Lohr, D. Hansen, and M. Lines, “High precision calibration of a scanning probe microscope (SPM) for pitch and overlay measurements,” Proc. SPIE 3050, 243-249(1997).

R. L. Wilkinson and J. H. Rilum, “DVD Mastering using dye polymer media,” Proc. SPIE 3109, 160-166 (1997).

C. S. Cook, D. A. Chernoff, and D. L. Burkhead, “Automated analysis of data mark microstructure of various media in the optical disc industry,” Proc. SPIE 4090, 16-25 (2000).

Other (3)

D. L. Burkhead and D. A. Chernoff, “AFM analysis of wobble amplitude,” in International Symposium on Optical Memory and Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, 2002), pp. 359-361.

W. Ulf, “Local track pitch measuring apparatus and method,” U.S. patent 2004081048 (2004), pp. 1-6.

J. Carriere, R. Narayan, W-H. Yeh, C. Peng, P. Khulbe, L. Li, R. Anderson, J. Choi, and M. Mansuripur, “Principles of optical disk data storage,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 41, Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: M, mirror; BS, beam splitter. Phase shifter 1 introduces a phase shift of π / 2 in the probe beam with respect to the reference beam. Phase shifter 2 introduces a phase shift of π rad in the modulating beam with respect to the reference beam. The attenuators equalize the three intensities at the plane of detection.

Fig. 2
Fig. 2

Right, normalized line profiles obtained with the interferometric technique. Left, line profiles obtained with an AFM. Some differences are apparent between the optical and the stylus measurements, which is understandable since the physical principles of the instruments differ. However, the profiles in both techniques show clear details of the gratings. For the 1200   lines / mm grating, the period is near λ, and the optical system is still capable of measuring it accurately. This high lateral resolution is justified because the system responds to a convolution with the Gaussian impulse response described by Eq. (2) and because of the large signal-to-noise ratio of the three-beam interferometer.

Fig. 3
Fig. 3

Line scans of (a) CD-R and (b) DVD-R.

Fig. 4
Fig. 4

Normalized DC variations for (a) the CD-R and (b) the DVD-R.

Fig. 5
Fig. 5

Resulting profile of the polycarbonate substrate measured with the AFM. A track profile (not to scale) is simulated to show two phases, ϕ 1 , ϕ 2 , under measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ψ 0 ( x , y ) = ( 2 P 0 π r 0 2 ) 1 2 exp [ ( x x 0 ) 2 + ( y y 0 ) 2 r 0 2 ] ,
V ( x 0 , y 0 ) = 4 P 0 π r 0 2 A ρ + + exp [ 2 [ ( x x 0 ) 2 + ( y y 0 ) 2 ] r 0 2 ] sin [ 2 π λ h ( x , y ) ] d x d y .

Metrics