Abstract

We present a comparative evaluation of two simple diffuse reflectance models for biological tissue applications. One model is based on a widely accepted and used in biomedical optics implementation of diffusion theory, and the other one is based on a semiempirical approach derived from basic physical principles. We test the models on tissue phantoms and on human skin, utilizing a standard six-around-one optical fiber probe for light delivery and collection. We show that both models are suitable for use with an optical fiber probe and illustrate the potential, applicability, and validity range of the models.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
    [CrossRef]
  2. V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
    [CrossRef]
  3. F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
    [CrossRef]
  4. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
    [CrossRef]
  5. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
    [CrossRef]
  6. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. I. Theory,” Appl. Opt. 22, 2456-2462(1983).
  7. L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to modeling of fiber optic catheters,” Appl. Opt. 15, 2059-2067 (1976).
  8. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879-888 (1992).
    [CrossRef]
  9. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef]
  10. T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region,” Appl. Opt. 42, 2888-2896 (2003).
    [CrossRef]
  11. R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
    [CrossRef]
  12. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628-6637 (1999).
    [CrossRef]
  13. G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117, 1452-1457 (2001).
    [CrossRef]
  14. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
    [CrossRef]
  15. W. J. Wiscombe, “Mie Scattering Calculations: Advances in Technique and Fast Vector Speed Computer Codes,” NCAR Technical Note, NCAR/TN-140+STR, National Center for Atmospheric Research, Boulder, Colorado (1979).
  16. O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives, (CC Thomas, 1970).
  17. M. Johns, C. A. Giller, D. C. German, and H. L. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828-4842 (2005).
    [CrossRef]
  18. G. M. Hale and M. R. Querry, “Optical-constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
    [CrossRef]
  19. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
    [CrossRef]
  20. G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263-8268 (2008).
    [CrossRef]
  21. G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
    [CrossRef]
  22. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005).
    [CrossRef]
  23. D. H. P. Schneiderheinze, T. R. Hillman, and D. D. Sampson, “Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering,” Opt. Express 15, 15002-15010 (2007).
    [CrossRef]
  24. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
    [CrossRef]
  25. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
    [CrossRef]
  26. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051-3053 (2005).
    [CrossRef]
  27. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310-1312(1996).
  28. D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
    [CrossRef]
  29. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29, 1087-1089 (2004).
    [CrossRef]
  30. R. Reif, O. A'Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317-7328(2007).
    [CrossRef]
  31. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. Demul, J. G. Aarnoudse, and W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435-447(1993).

2008 (3)

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263-8268 (2008).
[CrossRef]

2007 (2)

2006 (2)

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
[CrossRef]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

2005 (5)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

M. Johns, C. A. Giller, D. C. German, and H. L. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828-4842 (2005).
[CrossRef]

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051-3053 (2005).
[CrossRef]

2004 (1)

2003 (1)

2001 (1)

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

2000 (2)

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

1999 (1)

1998 (2)

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (2)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

1993 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879-888 (1992).
[CrossRef]

1983 (1)

1976 (1)

1973 (1)

A'Amar, O.

Aarnoudse, J. G.

Adler, S.

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

Aguilar, G.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Alfano, R. R.

Amelink, A.

Backman, V.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Backman, V. M.

Badizadegan, K.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Bard, M. P. L.

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

Bhutani, V. K.

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

Bigio, I. J.

R. Reif, O. A'Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317-7328(2007).
[CrossRef]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
[CrossRef]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

Boone, C. W.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Bown, S. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Boyer, J.

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
[CrossRef]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Burgers, S. A.

Bykowski, J.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

Choi, B.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Clay, C. D.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

Dalin, C.

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

Dassel, A. C. M.

Demetropoulos, I. N.

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

Demul, F. F. M.

Deutsch, T. F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Dimou, A.

G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263-8268 (2008).
[CrossRef]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
[CrossRef]

Enquist, H.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879-888 (1992).
[CrossRef]

Feld, M. S.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628-6637 (1999).
[CrossRef]

Ferwerda, H. A.

Fitzmaurice, M.

Fuselier, T.

Galaris, D.

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

German, D. C.

Giller, C. A.

Gopal, V.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Gourley, G. R.

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

Graaff, R.

Groenhuis, R. A. J.

Hale, G. M.

Hayashi, T.

Heenan, P. J.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

Hillman, T. R.

Hunter, M.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Ishimaru, A.

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Johns, M.

Johnson, C.

Johnson, L. H.

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

Johnson, T. M.

Jung, R.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Kalashnikov, M.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Kashio, Y.

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

Kelley, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

Koelink, M. H.

Koenig, F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Kollias, N.

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Kreamer, B.

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

Kumar, G.

Lagaris, I. E.

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

Lakhani, S.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Larne, R.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Liu, H. L.

Manoharan, R.

McGovern, F. J.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Mourant, J. R.

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
[CrossRef]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

Murphy, B. W.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

Nelson, J. S.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Okada, E.

Papageorgiou, D. G.

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879-888 (1992).
[CrossRef]

Perelman, L. T.

Pickard, D.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Popescu, G.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Querry, M. R.

Quirk, C. J.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

Reif, R.

Reynolds, L.

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Sampson, D. D.

D. H. P. Schneiderheinze, T. R. Hillman, and D. D. Sampson, “Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering,” Opt. Express 15, 15002-15010 (2007).
[CrossRef]

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

Schmitt, J. M.

Schneiderheinze, D. H. P.

Schomacker, K. T.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

Sterenborg, H. J. C. M.

Stoner, G. D.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Svaasand LO, L. O.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Ten Bosch, J. J.

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

Turlach, B. A.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

Van Assendelft, O. W.

O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives, (CC Thomas, 1970).

Van Dam, J.

Verkruysse, W.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Viator, J. A.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Wax, A.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Webster, R. J.

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879-888 (1992).
[CrossRef]

Wiscombe, W. J.

W. J. Wiscombe, “Mie Scattering Calculations: Advances in Technique and Fast Vector Speed Computer Codes,” NCAR Technical Note, NCAR/TN-140+STR, National Center for Atmospheric Research, Boulder, Colorado (1979).

Xu, M.

Zhang, R.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Zijlstra, W. G.

Zonios, G.

G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263-8268 (2008).
[CrossRef]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
[CrossRef]

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628-6637 (1999).
[CrossRef]

Appl. Opt. (8)

G. M. Hale and M. R. Querry, “Optical-constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
[CrossRef]

L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to modeling of fiber optic catheters,” Appl. Opt. 15, 2059-2067 (1976).

R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. I. Theory,” Appl. Opt. 22, 2456-2462(1983).

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. Demul, J. G. Aarnoudse, and W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435-447(1993).

G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628-6637 (1999).
[CrossRef]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997).
[CrossRef]

T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region,” Appl. Opt. 42, 2888-2896 (2003).
[CrossRef]

R. Reif, O. A'Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317-7328(2007).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef]

Comput. Phys. Commun. (1)

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

J Biomed. Opt. (4)

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005).
[CrossRef]

B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005).
[CrossRef]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000).
[CrossRef]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008).
[CrossRef]

J. Invest. Dermatol. (1)

G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117, 1452-1457 (2001).
[CrossRef]

J. Phys. D (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

Lasers Surg. Med. (1)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879-888 (1992).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Pediatrics (1)

V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000).
[CrossRef]

Phys. Med. Biol. (1)

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef]

Urology (1)

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998).
[CrossRef]

Other (2)

W. J. Wiscombe, “Mie Scattering Calculations: Advances in Technique and Fast Vector Speed Computer Codes,” NCAR Technical Note, NCAR/TN-140+STR, National Center for Atmospheric Research, Boulder, Colorado (1979).

O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives, (CC Thomas, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Distal tip of the fiber optic probe used in the study: the six outer fibers are used for delivery of light and the middle fiber for diffuse reflectance collection. The optical fiber core diameter is 200 μm .

Fig. 2
Fig. 2

(a) Spectrum of a normal skin site illustrating the linear dependence of diffuse reflectance on wavelength in the 650 900 nm range, and (b) spectrum of a vitiligo skin site (minimal presence of melanin) demonstrating the linear dependence of diffuse reflectance over a wider range, 450 900 nm . The absorption feature at approximately 550 nm is due to hemoglobin absorption.

Fig. 3
Fig. 3

Best fit of the diffusion model (solid lines) to reflectance measurements on the tissue phantom (data points): (a) zero absorption, diffuse reflectance as a function of the reduced scattering coefficient, and (b) diffuse reflectance as a function of the absorption coefficient for three different values of the reduced scattering coefficient: μ s = 0.6 mm 1 (circles), μ s = 1.8 mm 1 (triangles), and μ s = 3.2 mm 1 (squares).

Fig. 4
Fig. 4

Best fit of the diffusion model (solid lines) to reflectance measurements on the tissue phantom (data points): (a) zero absorption, diffuse reflectance as a function of the reduced scattering coefficient, and (b) diffuse reflectance as a function of the absorption coefficient for two different values of the reduced scattering coefficient: μ s = 0.6 mm 1 (circles) and μ s = 1.8 mm 1 (triangles).

Fig. 5
Fig. 5

Best fit of the semiempirical model (solid lines) to measurements on the tissue phantom (data points): (a) zero absorption, diffuse reflectance as a function of the reduced scattering coefficient, and (b) diffuse reflectance as a function of the absorption coefficient for three different values of the reduced scattering coefficient: μ s = 0.6 mm 1 (circles), μ s = 1.8 mm 1 (triangles), and μ s = 3.2 mm 1 (squares).

Fig. 6
Fig. 6

(a) Representative diffuse reflectance spectra measured on two different melanocytic nevi and corresponding model fits using the semiempirical model, and (b) the same spectra with fits using the diffusion-theory model. Both models perform very well in describing the spectra.

Tables (1)

Tables Icon

Table 1 Model Parameter Values for the Entire Skin Data Set

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = 1 k 1 1 μ s ( λ ) + k 2 μ a ( λ ) μ s ( λ ) .
R ( λ ) = R 0 μ s μ s + μ a { e μ z 0 + e ( 1 + 4 3 A ) μ z 0 z 0 e μ r 1 r 1 ( 1 + 4 3 A ) z 0 e μ r 2 r 2 } ,
r 1 = ( z 0 2 + r c 2 ) 1 / 2 , r 2 = ( z 0 2 ( 1 + 4 3 A ) 2 + r c 2 ) 1 / 2 , μ = ( 3 μ a ( μ a + μ s ) ) 1 / 2 , z 0 = 1 μ a + μ s .
μ a ( λ ) = c H b 1 ε H b 1 ( λ ) + c H b 2 ε H b 2 ( λ ) + c w ε w ( λ ) + c m e k m ( λ λ 0 λ 0 ) ,
μ s ( λ ) = ( 1 c 1 λ λ 1 λ 2 λ 1 ) μ s ( λ 1 ) .

Metrics