Abstract

The coupling coefficient in a strained step index plastic optical fiber is determined using our recent simplified method. This enabled the calculation of the length zs at which the steady-state distribution (SSD) is achieved. Results are in good agreement with measurements reported earlier. The strained fiber shows a much stronger mode coupling than the unstrained one of the same type. Consequently, the fiber length for achieving the SSD is much shorter for strained than unstrained fibers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hanson, “Wiring with plastic,” IEEE Lightwave Commun. Sys. 3, 34-39 (1992).
  2. P. E. Green, Jr., “Optical networking update,” IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
    [CrossRef]
  3. C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, “Properties of plastic optical fibers,” J. Opt. Soc. Am. B 15, 727-739 (1998).
    [CrossRef]
  4. D. Kalymnios, “Squeezing more bandwidth into high NA POF,” in Eighth International Conference on Plastic Optical Fibers and Applications--POF '99, (Chiba, 1999), pp. 18-23.
  5. K. Kitayama and M. Ikeda, “Mode coupling coefficient measurements in optical fibers,” Appl. Opt. 17, 3979-3983 (1978).
  6. J. Mateo, M. A. Losada, I. Garcés, and J. Zubía, “Global characterization of optical power propagation in step-index plastic optical fibers,” Opt. Express 14, 9028-9035 (2006).
    [CrossRef]
  7. A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
    [CrossRef]
  8. J. Dugas and G. Maurel, “Mode-coupling processes in polymethyl methacrylate-core optical fibers,” Appl. Opt. 31, 5069-5079 (1992).
  9. S. Zheng, X. Jin, and X. Zhang, “Analysis of the effects of mode coupling on the bandwidth characteristics of step-index optical fiber,” Microw. Opt. Technol. Lett. 48, 432-435 (2006).
  10. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, pp. 1538-1542 (1975).
  11. J. Zubía, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, and M. Lopez-Higuera, “New method to calculate mode conversion coefficients in SI multimode optical fibers,” J. Lightwave Technol. 21, 776-781 (2003).
    [CrossRef]
  12. S. Savović and A. Djordjevich, “Method for calculating the coupling coefficient in step index optical fibers,” Appl. Opt. 46, 1477-1481 (2007).
    [CrossRef]
  13. M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
    [CrossRef]
  14. J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubía, I. Garcés, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibers,” J. Lightwave Technol. 23, 1253-1260 (2005).
    [CrossRef]
  15. M. S. Kovačević, D. Nikezić, and A. Djordjevich, “Modeling the loss and mode coupling due to an irregular core-cladding interface in step-index plastic optical fibers,” Appl. Opt. 44, 3898-3903 (2005).
    [CrossRef]
  16. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).
  17. M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
    [CrossRef]
  18. A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
  19. S. Savović and A. Djordjevich, “Optical power flow in plastic clad silica fibers,” Appl. Opt. 41, 7588-7591 (2002).
    [CrossRef]
  20. S. Savović and A. Djordjevich, “Solution of mode coupling in step-index optical fibers by the Foker-Panck equation and the Langevin equation,” Appl. Opt. 41, 2826-2830 (2002).
    [CrossRef]
  21. M. Kovačević and D. Nikezić, “Influence of bending on power distribution in step-index plastic optical fibers and the calculation of bending loss,” Appl. Opt. 45, 6675-6680 (2006).
    [CrossRef]
  22. L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976).
  23. M. A. Losada, J. Mateo, I. Garcés, J. ZubíaJ. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photonics Technol. Lett. 16, 1513-1515 (2004).
  24. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002).
    [CrossRef]
  25. J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, “Light power behavior when bending plastic optical fibers,” in IEEE Proc. Optoelectron. 145, 313-318 (1998).
  26. A. Appajaiah and L. Jankowski, “A review on ageing or degradation of polymer optical fibers: Polymer chemistry and mathematical approach,” in Tenth International Conference on Plastic Optical Fibers and Applications--POF 2001 (Amsterdam, The Netherlands, 2001), pp. 317-324.
  27. S. Savović and A. Djordjevich, “Mode coupling in strained and unstrained step-index plastic optical fibers,” Appl. Opt. 45, 6775-6780 (2006).
    [CrossRef]

2007

2006

2005

2004

M. A. Losada, J. Mateo, I. Garcés, J. ZubíaJ. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photonics Technol. Lett. 16, 1513-1515 (2004).

2003

2002

2000

A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).

1998

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef]

C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, “Properties of plastic optical fibers,” J. Opt. Soc. Am. B 15, 727-739 (1998).
[CrossRef]

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, “Light power behavior when bending plastic optical fibers,” in IEEE Proc. Optoelectron. 145, 313-318 (1998).

1996

P. E. Green, Jr., “Optical networking update,” IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

1992

1978

1977

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

1976

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976).

1975

1972

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).

Aldabaldetreku, G.

Appajaiah, A.

A. Appajaiah and L. Jankowski, “A review on ageing or degradation of polymer optical fibers: Polymer chemistry and mathematical approach,” in Tenth International Conference on Plastic Optical Fibers and Applications--POF 2001 (Amsterdam, The Netherlands, 2001), pp. 317-324.

Arrue, J.

Arrúe, J.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, “Light power behavior when bending plastic optical fibers,” in IEEE Proc. Optoelectron. 145, 313-318 (1998).

Casao, J. A.

M. A. Losada, J. Mateo, I. Garcés, J. ZubíaJ. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photonics Technol. Lett. 16, 1513-1515 (2004).

Chen, W. D.

Djordjevich, A.

Dugas, J.

Durana, G.

Eve, M.

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Fraise, M.

Fuster, G.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, “Light power behavior when bending plastic optical fibers,” in IEEE Proc. Optoelectron. 145, 313-318 (1998).

Gambling, W. A.

Gao, R.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef]

Garcés, I.

Garito, A. F.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef]

C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, “Properties of plastic optical fibers,” J. Opt. Soc. Am. B 15, 727-739 (1998).
[CrossRef]

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).

Green, P. E.

P. E. Green, Jr., “Optical networking update,” IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

Hannay, J. H.

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Hanson, D.

D. Hanson, “Wiring with plastic,” IEEE Lightwave Commun. Sys. 3, 34-39 (1992).

Ikeda, M.

Jankowski, L.

A. Appajaiah and L. Jankowski, “A review on ageing or degradation of polymer optical fibers: Polymer chemistry and mathematical approach,” in Tenth International Conference on Plastic Optical Fibers and Applications--POF 2001 (Amsterdam, The Netherlands, 2001), pp. 317-324.

Jeunhomme, L.

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976).

Jiménez, F.

Jin, X.

S. Zheng, X. Jin, and X. Zhang, “Analysis of the effects of mode coupling on the bandwidth characteristics of step-index optical fiber,” Microw. Opt. Technol. Lett. 48, 432-435 (2006).

Kalymnios, D.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, “Light power behavior when bending plastic optical fibers,” in IEEE Proc. Optoelectron. 145, 313-318 (1998).

D. Kalymnios, “Squeezing more bandwidth into high NA POF,” in Eighth International Conference on Plastic Optical Fibers and Applications--POF '99, (Chiba, 1999), pp. 18-23.

Kitayama, K.

Koeppen, C.

Kovacevic, M.

Kovacevic, M. S.

Lopez-Higuera, M.

Losada, M. A.

Lou, J.

Mateo, J.

Matsumura, H.

Maurel, G.

Nikezic, D.

Payne, D. N.

Peréz-Vela, P.

M. A. Losada, J. Mateo, I. Garcés, J. ZubíaJ. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photonics Technol. Lett. 16, 1513-1515 (2004).

Pocholle, J. P.

Rousseau, M.

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

Salinas, I.

Savovic, S.

Shi, R. F.

Wang, J.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef]

Zhang, X.

S. Zheng, X. Jin, and X. Zhang, “Analysis of the effects of mode coupling on the bandwidth characteristics of step-index optical fiber,” Microw. Opt. Technol. Lett. 48, 432-435 (2006).

Zheng, S.

S. Zheng, X. Jin, and X. Zhang, “Analysis of the effects of mode coupling on the bandwidth characteristics of step-index optical fiber,” Microw. Opt. Technol. Lett. 48, 432-435 (2006).

Zubía, J.

Appl. Opt.

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, pp. 1538-1542 (1975).

L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976).

K. Kitayama and M. Ikeda, “Mode coupling coefficient measurements in optical fibers,” Appl. Opt. 17, 3979-3983 (1978).

J. Dugas and G. Maurel, “Mode-coupling processes in polymethyl methacrylate-core optical fibers,” Appl. Opt. 31, 5069-5079 (1992).

S. Savović and A. Djordjevich, “Solution of mode coupling in step-index optical fibers by the Foker-Panck equation and the Langevin equation,” Appl. Opt. 41, 2826-2830 (2002).
[CrossRef]

S. Savović and A. Djordjevich, “Optical power flow in plastic clad silica fibers,” Appl. Opt. 41, 7588-7591 (2002).
[CrossRef]

M. S. Kovačević, D. Nikezić, and A. Djordjevich, “Modeling the loss and mode coupling due to an irregular core-cladding interface in step-index plastic optical fibers,” Appl. Opt. 44, 3898-3903 (2005).
[CrossRef]

M. Kovačević and D. Nikezić, “Influence of bending on power distribution in step-index plastic optical fibers and the calculation of bending loss,” Appl. Opt. 45, 6675-6680 (2006).
[CrossRef]

S. Savović and A. Djordjevich, “Mode coupling in strained and unstrained step-index plastic optical fibers,” Appl. Opt. 45, 6775-6780 (2006).
[CrossRef]

S. Savović and A. Djordjevich, “Method for calculating the coupling coefficient in step index optical fibers,” Appl. Opt. 46, 1477-1481 (2007).
[CrossRef]

Bell Syst. Tech. J.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).

IEEE J. Sel. Areas Commun.

P. E. Green, Jr., “Optical networking update,” IEEE J. Sel. Areas Commun. 14, 764-779 (1996).
[CrossRef]

IEEE Lightwave Commun. Sys.

D. Hanson, “Wiring with plastic,” IEEE Lightwave Commun. Sys. 3, 34-39 (1992).

IEEE Photon. Technol. Lett.

A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).

IEEE Photonics Technol. Lett.

M. A. Losada, J. Mateo, I. Garcés, J. ZubíaJ. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photonics Technol. Lett. 16, 1513-1515 (2004).

IEEE Proc. Optoelectron.

J. Arrúe, J. Zubía, G. Fuster, and D. Kalymnios, “Light power behavior when bending plastic optical fibers,” in IEEE Proc. Optoelectron. 145, 313-318 (1998).

IEEE Trans. Microwave Theory Tech.

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Microw. Opt. Technol. Lett.

S. Zheng, X. Jin, and X. Zhang, “Analysis of the effects of mode coupling on the bandwidth characteristics of step-index optical fiber,” Microw. Opt. Technol. Lett. 48, 432-435 (2006).

Opt. Express

Opt. Quantum Electron.

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Science

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef]

Other

D. Kalymnios, “Squeezing more bandwidth into high NA POF,” in Eighth International Conference on Plastic Optical Fibers and Applications--POF '99, (Chiba, 1999), pp. 18-23.

A. Appajaiah and L. Jankowski, “A review on ageing or degradation of polymer optical fibers: Polymer chemistry and mathematical approach,” in Tenth International Conference on Plastic Optical Fibers and Applications--POF 2001 (Amsterdam, The Netherlands, 2001), pp. 317-324.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of the experimental arrangement for inducing bending strain (the figure-of-eight configuration) [14].

Fig. 2
Fig. 2

Experimental far-fields for a strained 0.46 NA SI POF illuminated by laser parallel to the fiber axis, after one turn (solid line) and seven turns (dashed-dotted line), where R = 20 mm (cylinder radius) and d = 45 mm (distance between cylinder centers), obtained by Arrue et al. [14].

Fig. 3
Fig. 3

Numerically determined normalized output angular power distribution for Gaussian beam launched centrally along the fiber axis with FWHM = 3 ° at fiber length of 0.375 m (solid line) and at fiber length 1.88 m (dashed-dotted line). Squares represent the analytical steady-state solution.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P ( θ , z ) z = α ( θ ) P ( θ , z ) + D θ θ ( θ P ( θ , z ) θ ) ,
P ( θ , z ) z = D θ P ( θ , z ) θ + D 2 P ( θ , z ) θ 2 .
P ( θ , z ) = J 0 ( 2.405 θ θ c ) exp ( - γ 0 z ) ,
P ( θ , z ) = exp [ ( θ - θ 0 ) 2 2 σ 2 ] ,
σ z 2 = σ z = 0 2 + 2 D z ,
D = σ z 2 σ z = 0 2 2 z .
D = σ z 2 2 σ z 1 2 2 ( z 2 z 1 ) ,

Metrics