Abstract

To attain deeper nulling for an extended incoherent star disk a scheme for an achromatic interfero-coronagraph, incorporating two common-path interferometers in tandem, is proposed. Analytical and numerical predictions of the performance, which are in reasonably good agreement, are presented. The predicted performance improvement, by using two interferometers in tandem, is demonstrated by a preliminary experiment. A star coronagraph based on the proposed technique has the possibility to reach a 1010 achromatic nulling contrast for an almost 102λ/D effective source size.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Guyon, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” C. R. Physique 8, 323-332. (2007).
    [CrossRef]
  2. Y. Rabbia, J. Gay, E. Bascou, and J. L. Schneider, contract 14398/00/NL/MV report (European Space Research and Technology Centre, Noordwijk, Holland, 2001), rabbia@obs-azur.fr.
  3. J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771-773 (2007).
    [CrossRef] [PubMed]
  4. F. Roddier and C. Roddier, “Stellar coronograph with phase mask,” Publ. Astron. Soc. Pac. 109, 815-820 (1997).
    [CrossRef]
  5. D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
    [CrossRef]
  6. C. van der Avoort, A. Mieremet, S. F. Pereira, and J. M. Braat, “Demonstration of nulling using delay line phase shifters,” Proc. SPIE 5491, 816-823 (2004).
    [CrossRef]
  7. J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
    [CrossRef]
  8. O. Guyon and M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118, 860-865 (2006).
    [CrossRef]
  9. B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
    [CrossRef]
  10. P. Baudoz, J. Gay, and Y. Rabbia, “Interfero-coronagraphy: A tool for detection of faint companions,” Astron. Soc. Pac. Conf. Ser. 134, 254-261 (1998).
  11. P. Baudoz, Y. Rabbia, and J. Gay, “Achromatic interfero coronagraphy, I. Theoretical capabilities for ground-based observations,” Astron. Astrophys. Suppl. Ser. 141, 319-329(2000).
    [CrossRef]
  12. P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, “Stellar coronagraphy: study and test of a hybrid interfero-coronagraph,” Publ. Astron. Soc. Pac. 117, 1004-1011 (2005).
    [CrossRef]
  13. A. V. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, “Achromatic coronagraph based on out-of-plane common-path nulling interferometer,” Proc. SPIE 5491, 824-830 (2004).
    [CrossRef]
  14. A. Tavrov, Y. Kobayashi, Y. Tanaka, T. Shioda, Y. Otani, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: nulling of polychromatic light,” Opt. Lett. 30, 2224, (2005).
    [CrossRef] [PubMed]
  15. M. Strojnik and G. Paez, “Simulated interferometric patterns generated by a nearby star-planet system and detected by a rotationally-shearing interferometer,” J. Opt. Soc. Am. A 16 (8), 2019-2024 (1999).
    [CrossRef]
  16. M. Strojnik-Scholl and G. Paez, “Cancellation of star-light generated by a nearby star-planet system upon detection with a rotationally-shearing interferometer,” Infrared Phys. Technol. 40, 357-365 (1999).
    [CrossRef]
  17. M. Strojnik and G. Paez, “Comparison of linear and rotationally shearing interferometric layouts for extrasolar planet detection from space,” Appl. Opt. 42, 5897-5905 (2003).
    [CrossRef] [PubMed]
  18. I. Moreno, G. Paez-Padilla, and M. Strojnik, “Dove prism with increased throughput for implementation in rotational shearing interferometer,” Appl. Opt. 42, 4514-4521(2003).
    [CrossRef] [PubMed]
  19. A. Tavrov, Ju. Nishikawa, M. Tamura, L. Abe, K. Yokochi, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: images from breadboard demon-strator.,” Appl. Opt. 46, 6885-6895 (2007).
    [CrossRef] [PubMed]
  20. S. Mallick, “Degree of coherence in the image of a quasi-monochromatic source,” Appl. Opt. 6, 1403-1405 (1967).
    [CrossRef] [PubMed]
  21. M. Francon and S. Mallick, “Improvement of the degree of spatial coherence in a Michelson interferometer,” Appl. Opt. 6, 873-876 (1967).
    [CrossRef] [PubMed]
  22. E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
    [CrossRef]
  23. A. Tavrov, Y. Miyamoto, T. Kawabat, M. Takeda, and V. Andreev, “Generalized algorithm for the unified analysis and simultaneous evaluation of geometrical spin-redirection phase and Pancharatnam phase in a complex interferometric system,” J. Opt. Soc. Am. A 17, 154-161 (2000).
    [CrossRef]
  24. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), Vol. 26, pp. 349-393.
    [CrossRef]
  25. D. Mawet, C. Hanot, C. Lenaerts, P. Riaud, D. Defrére, D. Vandormael, J. Loicq, K. Fleury, J. Y. Plesseria, J. Surdej, and S. Habraken, “Fresnel rhombs as achromatic phase shifters for infrared nulling interferometry,” Opt. Express 15, 12850-12865 (2007).
    [CrossRef] [PubMed]
  26. J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
    [CrossRef]

2007 (4)

2006 (3)

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

O. Guyon and M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118, 860-865 (2006).
[CrossRef]

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

2005 (3)

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, “Stellar coronagraphy: study and test of a hybrid interfero-coronagraph,” Publ. Astron. Soc. Pac. 117, 1004-1011 (2005).
[CrossRef]

A. Tavrov, Y. Kobayashi, Y. Tanaka, T. Shioda, Y. Otani, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: nulling of polychromatic light,” Opt. Lett. 30, 2224, (2005).
[CrossRef] [PubMed]

2004 (2)

A. V. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, “Achromatic coronagraph based on out-of-plane common-path nulling interferometer,” Proc. SPIE 5491, 824-830 (2004).
[CrossRef]

C. van der Avoort, A. Mieremet, S. F. Pereira, and J. M. Braat, “Demonstration of nulling using delay line phase shifters,” Proc. SPIE 5491, 816-823 (2004).
[CrossRef]

2003 (2)

2000 (3)

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

P. Baudoz, Y. Rabbia, and J. Gay, “Achromatic interfero coronagraphy, I. Theoretical capabilities for ground-based observations,” Astron. Astrophys. Suppl. Ser. 141, 319-329(2000).
[CrossRef]

A. Tavrov, Y. Miyamoto, T. Kawabat, M. Takeda, and V. Andreev, “Generalized algorithm for the unified analysis and simultaneous evaluation of geometrical spin-redirection phase and Pancharatnam phase in a complex interferometric system,” J. Opt. Soc. Am. A 17, 154-161 (2000).
[CrossRef]

1999 (3)

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
[CrossRef]

M. Strojnik and G. Paez, “Simulated interferometric patterns generated by a nearby star-planet system and detected by a rotationally-shearing interferometer,” J. Opt. Soc. Am. A 16 (8), 2019-2024 (1999).
[CrossRef]

M. Strojnik-Scholl and G. Paez, “Cancellation of star-light generated by a nearby star-planet system upon detection with a rotationally-shearing interferometer,” Infrared Phys. Technol. 40, 357-365 (1999).
[CrossRef]

1998 (1)

P. Baudoz, J. Gay, and Y. Rabbia, “Interfero-coronagraphy: A tool for detection of faint companions,” Astron. Soc. Pac. Conf. Ser. 134, 254-261 (1998).

1997 (1)

F. Roddier and C. Roddier, “Stellar coronograph with phase mask,” Publ. Astron. Soc. Pac. 109, 815-820 (1997).
[CrossRef]

1967 (2)

Abe, L.

Abe., L.

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

Aguayo, F.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Andreev, V.

Baba, N.

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

Bascou, E.

Y. Rabbia, J. Gay, E. Bascou, and J. L. Schneider, contract 14398/00/NL/MV report (European Space Research and Technology Centre, Noordwijk, Holland, 2001), rabbia@obs-azur.fr.

Baudoz, P.

P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, “Stellar coronagraphy: study and test of a hybrid interfero-coronagraph,” Publ. Astron. Soc. Pac. 117, 1004-1011 (2005).
[CrossRef]

P. Baudoz, Y. Rabbia, and J. Gay, “Achromatic interfero coronagraphy, I. Theoretical capabilities for ground-based observations,” Astron. Astrophys. Suppl. Ser. 141, 319-329(2000).
[CrossRef]

P. Baudoz, J. Gay, and Y. Rabbia, “Interfero-coronagraphy: A tool for detection of faint companions,” Astron. Soc. Pac. Conf. Ser. 134, 254-261 (1998).

Bifano, T.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Boccaletti, A.

P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, “Stellar coronagraphy: study and test of a hybrid interfero-coronagraph,” Publ. Astron. Soc. Pac. 117, 1004-1011 (2005).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

Braat, J. M.

C. van der Avoort, A. Mieremet, S. F. Pereira, and J. M. Braat, “Demonstration of nulling using delay line phase shifters,” Proc. SPIE 5491, 816-823 (2004).
[CrossRef]

Cheyne, M. R.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
[CrossRef]

Clenet, Y.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

Creath, K.

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), Vol. 26, pp. 349-393.
[CrossRef]

Defrére, D.

Fleury, K.

Francon, M.

Fregoso, S.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Galvez, E. J.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
[CrossRef]

Gay, J.

P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, “Stellar coronagraphy: study and test of a hybrid interfero-coronagraph,” Publ. Astron. Soc. Pac. 117, 1004-1011 (2005).
[CrossRef]

P. Baudoz, Y. Rabbia, and J. Gay, “Achromatic interfero coronagraphy, I. Theoretical capabilities for ground-based observations,” Astron. Astrophys. Suppl. Ser. 141, 319-329(2000).
[CrossRef]

P. Baudoz, J. Gay, and Y. Rabbia, “Interfero-coronagraphy: A tool for detection of faint companions,” Astron. Soc. Pac. Conf. Ser. 134, 254-261 (1998).

Y. Rabbia, J. Gay, E. Bascou, and J. L. Schneider, contract 14398/00/NL/MV report (European Space Research and Technology Centre, Noordwijk, Holland, 2001), rabbia@obs-azur.fr.

Green, Jo.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Guyon, O.

O. Guyon, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” C. R. Physique 8, 323-332. (2007).
[CrossRef]

O. Guyon and M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118, 860-865 (2006).
[CrossRef]

Habraken, S.

Hanot, C.

Holmes, C. D.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
[CrossRef]

Itoh, Y.

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

Kawabat, T.

Kobayashi, Y.

Kotani, T.

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

Kurokawa, T.

A. Tavrov, Ju. Nishikawa, M. Tamura, L. Abe, K. Yokochi, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: images from breadboard demon-strator.,” Appl. Opt. 46, 6885-6895 (2007).
[CrossRef] [PubMed]

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

A. Tavrov, Y. Kobayashi, Y. Tanaka, T. Shioda, Y. Otani, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: nulling of polychromatic light,” Opt. Lett. 30, 2224, (2005).
[CrossRef] [PubMed]

A. V. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, “Achromatic coronagraph based on out-of-plane common-path nulling interferometer,” Proc. SPIE 5491, 824-830 (2004).
[CrossRef]

Labeyrie, A.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

Lane, B.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Lenaerts, C.

Levine, B.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Liu, D.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Loicq, J.

Mallick, S.

Mawet, D.

Mennesson, B.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Mieremet, A.

C. van der Avoort, A. Mieremet, S. F. Pereira, and J. M. Braat, “Demonstration of nulling using delay line phase shifters,” Proc. SPIE 5491, 816-823 (2004).
[CrossRef]

Miyamoto, Y.

Moreno, I.

Murakami, N.

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

Nishikawa, J.

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

Nishikawa, Ju.

Otani, Y.

Paez, G.

Paez-Padilla, G.

Pereira, S. F.

C. van der Avoort, A. Mieremet, S. F. Pereira, and J. M. Braat, “Demonstration of nulling using delay line phase shifters,” Proc. SPIE 5491, 816-823 (2004).
[CrossRef]

Plesseria, J. Y.

Rabbia, Y.

P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, “Stellar coronagraphy: study and test of a hybrid interfero-coronagraph,” Publ. Astron. Soc. Pac. 117, 1004-1011 (2005).
[CrossRef]

P. Baudoz, Y. Rabbia, and J. Gay, “Achromatic interfero coronagraphy, I. Theoretical capabilities for ground-based observations,” Astron. Astrophys. Suppl. Ser. 141, 319-329(2000).
[CrossRef]

P. Baudoz, J. Gay, and Y. Rabbia, “Interfero-coronagraphy: A tool for detection of faint companions,” Astron. Soc. Pac. Conf. Ser. 134, 254-261 (1998).

Y. Rabbia, J. Gay, E. Bascou, and J. L. Schneider, contract 14398/00/NL/MV report (European Space Research and Technology Centre, Noordwijk, Holland, 2001), rabbia@obs-azur.fr.

Rao, S.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Riaud, P.

Roddier, C.

F. Roddier and C. Roddier, “Stellar coronograph with phase mask,” Publ. Astron. Soc. Pac. 109, 815-820 (1997).
[CrossRef]

Roddier, F.

F. Roddier and C. Roddier, “Stellar coronograph with phase mask,” Publ. Astron. Soc. Pac. 109, 815-820 (1997).
[CrossRef]

Rouan, D.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

Samuele, R.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Schmidtlin, E.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Schneider, J. L.

Y. Rabbia, J. Gay, E. Bascou, and J. L. Schneider, contract 14398/00/NL/MV report (European Space Research and Technology Centre, Noordwijk, Holland, 2001), rabbia@obs-azur.fr.

Serabyn, E.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Shao, M.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

O. Guyon and M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118, 860-865 (2006).
[CrossRef]

Shioda, T.

A. Tavrov, Y. Kobayashi, Y. Tanaka, T. Shioda, Y. Otani, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: nulling of polychromatic light,” Opt. Lett. 30, 2224, (2005).
[CrossRef] [PubMed]

A. V. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, “Achromatic coronagraph based on out-of-plane common-path nulling interferometer,” Proc. SPIE 5491, 824-830 (2004).
[CrossRef]

Stewart, J. B.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
[CrossRef]

Stewart, Ja.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Strojnik, M.

Strojnik-Scholl, M.

M. Strojnik-Scholl and G. Paez, “Cancellation of star-light generated by a nearby star-planet system upon detection with a rotationally-shearing interferometer,” Infrared Phys. Technol. 40, 357-365 (1999).
[CrossRef]

Surdej, J.

Sztul, H. I.

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
[CrossRef]

Takeda, M.

Tamura, M.

A. Tavrov, Ju. Nishikawa, M. Tamura, L. Abe, K. Yokochi, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: images from breadboard demon-strator.,” Appl. Opt. 46, 6885-6895 (2007).
[CrossRef] [PubMed]

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

Tanaka, Y.

A. Tavrov, Y. Kobayashi, Y. Tanaka, T. Shioda, Y. Otani, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: nulling of polychromatic light,” Opt. Lett. 30, 2224, (2005).
[CrossRef] [PubMed]

A. V. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, “Achromatic coronagraph based on out-of-plane common-path nulling interferometer,” Proc. SPIE 5491, 824-830 (2004).
[CrossRef]

Tavrov, A.

Tavrov, A. V.

A. V. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, “Achromatic coronagraph based on out-of-plane common-path nulling interferometer,” Proc. SPIE 5491, 824-830 (2004).
[CrossRef]

Traub, W. A.

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771-773 (2007).
[CrossRef] [PubMed]

Trauger, J. T.

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771-773 (2007).
[CrossRef] [PubMed]

van der Avoort, C.

C. van der Avoort, A. Mieremet, S. F. Pereira, and J. M. Braat, “Demonstration of nulling using delay line phase shifters,” Proc. SPIE 5491, 816-823 (2004).
[CrossRef]

Vandormael, D.

Wallace, J.

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Yokochi, K.

A. Tavrov, Ju. Nishikawa, M. Tamura, L. Abe, K. Yokochi, T. Kurokawa, and M. Takeda, “Common-path achromatic interferometer-coronagraph: images from breadboard demon-strator.,” Appl. Opt. 46, 6885-6895 (2007).
[CrossRef] [PubMed]

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

Appl. Opt. (5)

Astron. Astrophys. (1)

J. Nishikawa, T. Kotani, N. Murakami, N. Baba, Y. Itoh, and M. Tamura, “Combination of nulling interferometer and modified pupil for observations of exo-planets,” Astron. Astrophys. 435, 379-384 (2005).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

P. Baudoz, Y. Rabbia, and J. Gay, “Achromatic interfero coronagraphy, I. Theoretical capabilities for ground-based observations,” Astron. Astrophys. Suppl. Ser. 141, 319-329(2000).
[CrossRef]

Astron. Soc. Pac. Conf. Ser. (1)

P. Baudoz, J. Gay, and Y. Rabbia, “Interfero-coronagraphy: A tool for detection of faint companions,” Astron. Soc. Pac. Conf. Ser. 134, 254-261 (1998).

C. R. Physique (1)

O. Guyon, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” C. R. Physique 8, 323-332. (2007).
[CrossRef]

Infrared Phys. Technol. (1)

M. Strojnik-Scholl and G. Paez, “Cancellation of star-light generated by a nearby star-planet system upon detection with a rotationally-shearing interferometer,” Infrared Phys. Technol. 40, 357-365 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature (1)

J. T. Trauger and W. A. Traub, “A laboratory demonstration of the capability to image an Earth-like extrasolar planet,” Nature 446, 771-773 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. J. Galvez, M. R. Cheyne, J. B. Stewart, C. D. Holmes, and H. I. Sztul, “Variable geometric-phase polarization rotators for the visible,” Opt. Commun. 171, 7-13 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (4)

J. Nishikawa, N. Murakami, L. Abe., T. Kotani, M. Tamura, K. Yokochi, and T. Kurokawa, “Nulling and adaptive optics for very high dynamic range coronagraph,” Proc. SPIE 6265, 62653Q (2006).
[CrossRef]

A. V. Tavrov, Y. Tanaka, T. Shioda, T. Kurokawa, and M. Takeda, “Achromatic coronagraph based on out-of-plane common-path nulling interferometer,” Proc. SPIE 5491, 824-830 (2004).
[CrossRef]

C. van der Avoort, A. Mieremet, S. F. Pereira, and J. M. Braat, “Demonstration of nulling using delay line phase shifters,” Proc. SPIE 5491, 816-823 (2004).
[CrossRef]

B. Levine, F. Aguayo, T. Bifano, S. Fregoso, Jo. Green, B. Lane, D. Liu, B. Mennesson, S. Rao, R. Samuele, M. Shao, E. Schmidtlin, E. Serabyn, Ja. Stewart, and J. Wallace, “The visible nulling coronagraph: architecture definition and technology development status,” Proc. SPIE 6265, 62651A (2006).
[CrossRef]

Publ. Astron. Soc. Pac. (4)

O. Guyon and M. Shao, “The pupil-swapping coronagraph,” Publ. Astron. Soc. Pac. 118, 860-865 (2006).
[CrossRef]

F. Roddier and C. Roddier, “Stellar coronograph with phase mask,” Publ. Astron. Soc. Pac. 109, 815-820 (1997).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clenet, and A. Labeyrie, “The four-quadrant phase mask coronagraph,” Publ. Astron. Soc. Pac. 112, 1479-1486 (2000).
[CrossRef]

P. Baudoz, A. Boccaletti, Y. Rabbia, and J. Gay, “Stellar coronagraphy: study and test of a hybrid interfero-coronagraph,” Publ. Astron. Soc. Pac. 117, 1004-1011 (2005).
[CrossRef]

Other (2)

K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), Vol. 26, pp. 349-393.
[CrossRef]

Y. Rabbia, J. Gay, E. Bascou, and J. L. Schneider, contract 14398/00/NL/MV report (European Space Research and Technology Centre, Noordwijk, Holland, 2001), rabbia@obs-azur.fr.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A schematic of (a) a single interferometer and (b) two interferometers in tandem.

Fig. 2
Fig. 2

Ray model to evaluate the nulling contrast in a single 180 ° RSI.

Fig. 3
Fig. 3

Ray model to evaluate the nulling contrast achieved by the 180 ° RSI and the 90 ° RSI in tandem.

Fig. 4
Fig. 4

Nulling contrasts N C 1 , N C 2 , N C Σ in pupil plane. The region for the small source sizes is shown magnified on the right. N C 1 , dashed curve; N C 2 , dotted curve; N C Σ , solid curve.

Fig. 5
Fig. 5

Overall nulling contrasts N C ¯ 1 , N C ¯ 2 , and N C ¯ Σ in the image plane evaluated from the degrees of coherences μ ¯ 1 , μ ¯ 2 , and μ ¯ Σ averaged over the pupil plane. N C ¯ 1 , dashed curve; N C ¯ 2 , dotted curve; N C ¯ Σ , solid curve.

Fig. 6
Fig. 6

Interference fringe contrasts numerically evaluated by ray tracing (inverted nulling contrast): (a)  N C 1 : single interferometer and (b)  N C Σ : two interferometers in tandem.

Fig. 7
Fig. 7

IWA shows the coronagraphic transmission T of a point source at various tilts θ to the optical axis: for a single 180 ° RSI, dashed curve and for the tandem of a 180 ° RSI and a 90 ° RSI, solid curve.

Fig. 8
Fig. 8

Schematic for the experiment with two interferometers in tandem.

Fig. 9
Fig. 9

Pupil images detected after the second interferometer: (a) inserted λ / 2 retarder introduces inverted coherence function with much flatten bottom; (b) removed λ / 2 introduces the classical coherence function, which is the residual pupil pattern corresponding to a single interferometer.

Fig. 10
Fig. 10

Observed cross sections of nulling contrasts dependencies in pupil plane versus the radial coordinate r ˜ . N C 1 ( r ˜ ) : dashed curve in magenta, N C Σ ( r ˜ ) : solid curve in red.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

I A C = ( u A e i ϕ A + u C e i ϕ C ) ( u A * e i ϕ A + u C * e i ϕ C ) = u A u A * + u C u C * + u A u C * e i ( ϕ A ϕ C ) + u A * u C e i ( ϕ A ϕ C ) = I A + I C + 2 Re [ u A u C * e i ( ϕ A ϕ C ) ] = I A + I C + 2 I A I C Re [ μ A C e i ( ϕ A ϕ C ) ] ,
I A C = 2 I ( 1 + Re [ μ A C e i ( ϕ A ϕ C ) ] ) .
I A C min = 2 I ( 1 + Re [ μ A C e i ( π ) ] ) = 2 I ( 1 μ A C ) ,
I A C max = 2 I ( 1 + Re [ μ A C e i ( 0 ) ] ) = 2 I ( 1 + μ A C ) ,
μ A C = V A C = I A C max I A C min I A C max + I A C min .
μ B D = μ A C = μ 1
μ ¯ = Pupil A ( x , y ) [ μ ( x , y ; x , y ) ] d x d y / Pupil A ( x , y ) d x d y .
N C ¯ = 2 Pupil A ( x , y ) I [ 1 Re [ μ ( x , y ; x , y ) ] ] d x d y 2 Pupil A ( x , y ) I [ 1 + Re [ μ ( x , y ; x , y ) ] ] d x d y = 1 Re [ μ ¯ ] 1 + Re [ μ ¯ ] .
μ ( x , y ; x , y ) = Source S ( k x , k y ) exp [ 2 i ( k x x + k y y ) ] d k x d k y Source S ( k x , k y ) d k x d k y ,
μ ¯ = Pupil Star A ( x , y ) S ( k x , k y ) exp [ 2 i ( k x x + k y y ) ] d k x d k y d x d y Pupil Star A ( x , y ) S ( k x , k y ) d k x d k y d x d y ,
A ( r ) = { 1 for     ( r = x 2 + y 2 R ) 0 for     ( r = x 2 + y 2 > R ) .
μ ¯ = Star S ( k x , k y ) { 0 R 0 2 π exp [ 2 i k x 2 + k y 2 r cos ( ϕ φ ) ] r d r d φ } d k x d k y / [ π R 2 Star S ( k x , k y ) d k x d k y ] = Star S ( k x , k y ) [ 0 R 2 π J 0 ( 2 k x 2 + k y 2 r ) r d r ] d k x d k y / [ π R 2 Star S ( k x , k y ) d k x d k y ] = Star S ( k x , k y ) J 1 ( 2 k x 2 + k y 2 R ) k x 2 + k y 2 R d k x d k y / [ Star S ( k x , k y ) d k x d k y ]
= 0 k max S ( k ) J 1 ( 2 k R ) k R k d k / 0 k max S ( k ) k d k = 1 R 0 k max J 1 ( 2 k R ) d k / 0 k max k d k = 1 J 0 ( 2 k max R ) ( k max R ) 2 = 1 J 0 ( s ) s 2 / 4 .
P = ( w 0 2 ) ( 1 Re [ μ ¯ ] ) = ( w 0 2 ) { 1 1 J 0 ( s ) s 2 / 4 } ,
N C ¯ = 1 Re [ μ ¯ ] 1 + Re [ μ ¯ ] = 1 [ 1 J 0 ( s ) ] / ( s 2 / 4 ) 1 + [ 1 J 0 ( s ) ] / ( s 2 / 4 ) = 1 [ 1 J 0 ( 2 k θ R ) ] / ( k θ R ) 2 1 + [ 1 J 0 ( 2 k θ R ) ] / ( k θ R ) 2 .
I I , II min = I A B C D min = [ ( u A + u C ) + ( u B + u D ) e i ( π ) ] * [ ( u A + u C ) + ( u B + u D ) e i ( π ) ] = [ ( u A + u C ) ( u B + u D ) ] * [ ( u A + u C ) ( u B + u D ) ] = u A * u A I + u B * u B I + u C * u C I + u D * u D I + 2 Re u A * u C I Re [ μ 1 ] 2 Re u A * u B I Re [ μ 2 ] 2 Re u A * u D I Re [ μ 2 ] 2 Re u C * u B I Re [ μ 2 ] 2 Re u C * u D I Re [ μ 2 ] + 2 Re u B * u D I Re [ μ 1 ] = 4 I ( 1 + Re [ μ 1 ] 2 Re [ μ 2 ] ) = 4 I ( 1 + μ 1 2 μ 2 ) .
I I , II max = I A B C D max = [ ( u A + u C ) + ( u B + u D ) e i ( 0 ) ] * [ ( u A + u C ) + ( u B + u D ) e i ( 0 ) ] = [ ( u A + u C ) + ( u B + u D ) ] * [ ( u A + u C ) + ( u B + u D ) ] = 4 I ( 1 + Re [ μ 1 ] + 2 Re [ μ 2 ] ) = 4 I ( 1 + μ 1 + 2 μ 2 ) .
N C Σ = 1 Re [ μ 1 ] + 2 Re [ μ 2 ] 1 + Re [ μ 1 ] + 2 Re [ μ 2 ] = 1 + μ 1 2 μ 2 1 + μ 1 + 2 μ 2 .
N C Σ ¯ = 4 Pupil A ( r ) I { 1 + Re [ μ 1 ( r ) ] 2 Re [ μ 2 ( r ) ] } 2 π r d r 4 Pupil A ( r ) I { 1 + Re [ μ 1 ( r ) ] + 2 Re [ μ 2 ( r ) ] } 2 π r d r = 1 + Re [ μ ¯ 1 ] 2 Re [ μ ¯ 2 ] 1 + Re [ μ ¯ 1 ] + 2 Re [ μ ¯ 2 ] = 1 + μ ¯ 1 2 μ ¯ 2 1 + μ ¯ 1 + 2 μ ¯ 2 ,
μ 1 ( r ˜ ) = J 1 ( 2 r ˜ ) r ˜ ,
μ 2 ( r ˜ ) = 2 J 1 ( 2 r ˜ ) r ˜ .
μ ¯ 1 = μ ¯ = 1 J 0 ( 2 k max R ) ( k max R ) 2 = 1 J 0 ( s ) s 2 / 4 .
μ ¯ 2 = 1 J 0 ( 2 k max R ) ( k max R / 2 ) 2 = 1 J 0 ( s / 2 ) s 2 / 8 .
N C Σ ¯ = 1 + [ 1 J 0 ( s ) ] / ( s 2 / 4 ) 2 [ 1 J 0 ( s / 2 ) ] / ( s 2 / 8 ) 1 + [ 1 J 0 ( s ) ] / ( s 2 / 4 ) + 2 [ 1 J 0 ( s / 2 ) ] / ( s 2 / 8 ) .
I Σ π , π = [ ( u A u C ) ( u B u D ) ] * [ ( u A u C ) ( u B u D ) ] = 4 I ( 1 μ 1 ) ,
N C Σ π , π = 1 μ 1 1 + μ 1 .
N C Σ 0 , π = 1 + μ 1 2 μ 2 1 + μ 1 + 2 μ 2 .
N C 2 = 1 Re [ μ 2 ] 1 + Re [ μ 2 ] ,
T = 0.5 ( 1 J 1 ( 2 π θ λ / D ) π θ λ / D ) / ( 1 + J 1 ( 2 π θ λ / D ) π θ λ / D ) ,
T = 0.25 ( 1 + J 1 ( 2 π θ λ / D ) π θ λ / D 2 2 J 1 ( 2 π θ λ / D ) π θ λ / D ) / ( 1 + J 1 ( 2 π θ λ / D ) π θ λ / D + 2 2 J 1 ( 2 π θ λ / D ) π θ λ / D ) ,
I A C : 1 4 ( ρ , ϕ , r , φ ) = I A + I C + 2 I A I C cos ( Δ Φ A C + Δ ψ 1 4 ) 2 I { 1 + cos [ Δ Φ A C ( ρ , ϕ ; r , φ ) + Δ ψ 1 4 ] } ,
I 1 4 ( r , φ ) = 1 N 1 M i = 1 M j = 1 N I 1 4 ( ρ i , ϕ j , r , φ ) .
Re { μ 1 ( r , φ ) } = 2 ( I 4 I 2 ) 2 + ( I 1 I 3 ) 2 / ( I 1 + I 2 + I 3 + I 4 ) .
μ ¯ 1 = 1 N 1 M i = 1 M j = 1 N μ 1 ( r i , φ j ) .
I A B C D : 1 4 ( ρ , ϕ , r , φ ) = I A C + I B D + 2 I A C I B D cos [ ( ψ A C ψ B D ) + Δ ψ 1 4 ] 2 I [ 1 + cos ( ψ A C ψ B D + Δ ψ 1 4 ) ] .

Metrics