Abstract

We investigate the power losses in bent and elongated graded-index polymer optical fibers (GI POFs). The variations of power losses in deformed GI POFs for various radii of curvature and elongations are measured. A simple tensile test result is used to calculate the average plastic energy density (APED) in a deformed GI POF at various elongations. The results indicate that the APED accumulated in a deformed GI POF can be considered as a key index to study the power loss in POF. Based on the experimental results, a curve-fitted equation is proposed to estimate the power loss using the APED for various radii of curvature. The maximum difference between the proposed equation and the experimental results is less than 3% for the deformed GI POFs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Losada, I. Garce's, J. Mateo, J. Salinas, J. Lou, and J. Zubia, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002).
    [CrossRef]
  2. J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 836-844 (2001).
    [CrossRef]
  3. K. Makino, T. Ishigure, and Y. Koike, “Waveguide parameter design of graded-index plastic optic fibers for bending-loss reduction,” J. Lightwave Technol. 24, 2108-2114 (2006).
    [CrossRef]
  4. K. Makino, T. Nakamura, T. Ishigure, and Y. Koike, “Analysis of graded-index polymer optic fiber link performance under fiber bending,” J. Lightwave Technol. 23, 2062-2072 (2005).
    [CrossRef]
  5. M. Sato, M. Hirai, T. Ishigure, and Y. Koike, “High temperature resistant graded-index polymer optical fiber,” J. Lightwave Technol. 18, 2139-2145 (2000).
    [CrossRef]
  6. T. Ishigure, M. Sato, A. Kondo, and Y. Koike, “High-bandwidth graded-index polymer optical biber with high-temperature stability,” J. Lightwave Technol. 20, 1443-1448 (2002).
    [CrossRef]
  7. J. Arrue and J. Zubia, “Analysis of the decrease in attenuation achieved by properly bending plastic optical fibres,” IEE Proc. Optoelectron 143, 135-138 (1996).
  8. J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IEE Proc. Optoelectron. 145, 313-318 (1998).
    [CrossRef]
  9. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997-1002 (2003).
    [CrossRef] [PubMed]
  10. W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, “ The Reliability of POF,” in POF-Polymer Optical Fibers for Data Communication (Springer, 2002).
  11. J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3, 162-167 (1997).
    [CrossRef]
  12. H. Tai and R. Rogowski, “Optical anisotropy induced by torsion and bending in an optical fiber,” Opt. Fiber Technol. 8, 162-169 (2002).
    [CrossRef]
  13. M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
    [CrossRef]
  14. Y. C. Chen, L. W. Chen, and P. C. Chen, “Combined effects of bending and elongation on polymer optical fiber losses,” Opt. Lett. 30, 230-232 (2005).
    [CrossRef] [PubMed]
  15. Y. C. Chen, J. K. Kuang, L. W. Chen, and H. C. Chuang, “Effect of plastic strain energy density on polymer optical fiber power losses,” Opt. Lett. 31, 879-881 (2006).
    [CrossRef] [PubMed]
  16. Y. C. Chen, “Power losses in deformed polymer optical fiber under high temperature,” J. Lightwave Technol. 24, 4983-4990 (2006).
    [CrossRef]
  17. C. J. F. Ridders, “Three-point iterations derived from exponential curve fitting,” IEEE Trans. Circuits Syst. CAS-26, 669-670 (1979).
    [CrossRef]

2006 (3)

2005 (2)

2004 (1)

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

2003 (1)

2002 (3)

2001 (1)

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 836-844 (2001).
[CrossRef]

2000 (1)

1998 (1)

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IEE Proc. Optoelectron. 145, 313-318 (1998).
[CrossRef]

1997 (1)

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3, 162-167 (1997).
[CrossRef]

1996 (1)

J. Arrue and J. Zubia, “Analysis of the decrease in attenuation achieved by properly bending plastic optical fibres,” IEE Proc. Optoelectron 143, 135-138 (1996).

1979 (1)

C. J. F. Ridders, “Three-point iterations derived from exponential curve fitting,” IEEE Trans. Circuits Syst. CAS-26, 669-670 (1979).
[CrossRef]

Aldabaldetreku, G.

Arrue, J.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 836-844 (2001).
[CrossRef]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IEE Proc. Optoelectron. 145, 313-318 (1998).
[CrossRef]

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3, 162-167 (1997).
[CrossRef]

J. Arrue and J. Zubia, “Analysis of the decrease in attenuation achieved by properly bending plastic optical fibres,” IEE Proc. Optoelectron 143, 135-138 (1996).

Casao, J. A.

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Chen, L. W.

Chen, P. C.

Chen, Y. C.

Chuang, H. C.

Daum, W.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, “ The Reliability of POF,” in POF-Polymer Optical Fibers for Data Communication (Springer, 2002).

Durana, G.

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 836-844 (2001).
[CrossRef]

Fuster, G.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IEE Proc. Optoelectron. 145, 313-318 (1998).
[CrossRef]

Garces, I.

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Garce's, I.

Hirai, M.

Ishigure, T.

Kalymnios, D.

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IEE Proc. Optoelectron. 145, 313-318 (1998).
[CrossRef]

Koike, Y.

Kondo, A.

Krauser, J.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, “ The Reliability of POF,” in POF-Polymer Optical Fibers for Data Communication (Springer, 2002).

Kuang, J. K.

Losada, M. A.

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

M. A. Losada, I. Garce's, J. Mateo, J. Salinas, J. Lou, and J. Zubia, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002).
[CrossRef]

Lou, J.

Makino, K.

Mateo, J.

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

M. A. Losada, I. Garce's, J. Mateo, J. Salinas, J. Lou, and J. Zubia, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002).
[CrossRef]

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 836-844 (2001).
[CrossRef]

Mendioroz, A.

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3, 162-167 (1997).
[CrossRef]

Nakamura, T.

Pe'rez-Vela, P.

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Ridders, C. J. F.

C. J. F. Ridders, “Three-point iterations derived from exponential curve fitting,” IEEE Trans. Circuits Syst. CAS-26, 669-670 (1979).
[CrossRef]

Rogowski, R.

H. Tai and R. Rogowski, “Optical anisotropy induced by torsion and bending in an optical fiber,” Opt. Fiber Technol. 8, 162-169 (2002).
[CrossRef]

Salinas, J.

Sato, M.

Tai, H.

H. Tai and R. Rogowski, “Optical anisotropy induced by torsion and bending in an optical fiber,” Opt. Fiber Technol. 8, 162-169 (2002).
[CrossRef]

Zamzow, P. E.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, “ The Reliability of POF,” in POF-Polymer Optical Fibers for Data Communication (Springer, 2002).

Ziemann, O.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, “ The Reliability of POF,” in POF-Polymer Optical Fibers for Data Communication (Springer, 2002).

Zubia, J.

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

M. A. Losada, I. Garce's, J. Mateo, J. Salinas, J. Lou, and J. Zubia, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002).
[CrossRef]

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 836-844 (2001).
[CrossRef]

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IEE Proc. Optoelectron. 145, 313-318 (1998).
[CrossRef]

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3, 162-167 (1997).
[CrossRef]

J. Arrue and J. Zubia, “Analysis of the decrease in attenuation achieved by properly bending plastic optical fibres,” IEE Proc. Optoelectron 143, 135-138 (1996).

Appl. Opt. (1)

IEE Proc. (1)

J. Arrue and J. Zubia, “Analysis of the decrease in attenuation achieved by properly bending plastic optical fibres,” IEE Proc. Optoelectron 143, 135-138 (1996).

IEE Proc. Optoelectron. (1)

J. Arrue, J. Zubia, G. Fuster, and D. Kalymnios, “Light power behaviour when bending plastic optical fibres,” IEE Proc. Optoelectron. 145, 313-318 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Arrue, J. Zubia, G. Durana, and J. Mateo, “Parameters affecting bending losses in graded-index polymer optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 836-844 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. A. Losada, J. Mateo, I. Garces, J. Zubia, J. A. Casao, and P. Pe'rez-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

IEEE Trans. Circuits Syst. (1)

C. J. F. Ridders, “Three-point iterations derived from exponential curve fitting,” IEEE Trans. Circuits Syst. CAS-26, 669-670 (1979).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Fiber Technol. (2)

J. Zubia, J. Arrue, and A. Mendioroz, “Theoretical analysis of the torsion induced optical effect in a plastic optical fiber,” Opt. Fiber Technol. 3, 162-167 (1997).
[CrossRef]

H. Tai and R. Rogowski, “Optical anisotropy induced by torsion and bending in an optical fiber,” Opt. Fiber Technol. 8, 162-169 (2002).
[CrossRef]

Opt. Lett. (2)

Other (1)

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, “ The Reliability of POF,” in POF-Polymer Optical Fibers for Data Communication (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for GI POF attenuation measurement.

Fig. 2
Fig. 2

Load-displacement curves of a deformed GI POF and SI POF.

Fig. 3
Fig. 3

Power ratio displacement curves of a deformed GI POF and SI POF.

Fig. 4
Fig. 4

Load-displacement curves of deformed GI POFs at various radii of curvature.

Fig. 5
Fig. 5

Variations of power ratios P out / P in with displacement as function of radius of curvature R.

Fig. 6
Fig. 6

Stress distribution in deformed GI POF core.

Fig. 7
Fig. 7

Variation in the core diameter ratio of deformed GI POF.

Fig. 8
Fig. 8

Variations of normalized power ratios η ¯ with elongation ratio ε as a function of radius of curvature R.

Fig. 9
Fig. 9

Variations in APEDs u ¯ p with elongation ratio as a function of radius of curvature R.

Fig. 10
Fig. 10

Dependence of normalized power ratio η ¯ on APED u ¯ p for various radii of curvature R.

Fig. 11
Fig. 11

Relationship between the initial power ratio η o and the radius of curvature R.

Fig. 12
Fig. 12

Power ratios η o obtained from the experimental measurements and the proposed equation.

Tables (1)

Tables Icon

Table 1 Mechanical Properties of GI POF Used in the Finite Element Simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u ¯ p = v u p d V V ,
η ¯ = 0.9169 + 0.0783 exp ( 142.8 u ¯ p ) .
η o = 0.047 + 2.92 × 10 2 R 2.11 × 10 4 R 2 .
P out P in = η = ( 0.047 + 2.92 × 10 2 R 2.11 × 10 4 R 2 ) [ ( 0.9169 + 0.0783 exp ( 142.18 u ¯ p ) ) ] .

Metrics