Abstract

We focus on the development of a remote temperature sensing technology, i.e., an optical laser-based sensor, using thermographic phosphors for medical applications, particularly within an electromagnetically hostile magnetic resonance imaging (MRI) environment. A MRI scanner uses a strong magnetic field and radio waves to generate images of the inside of the body. The quality of the image improves with increasing magnetic resonance; however, the drawback of applying a greater magnetic strength is the inducement of heat into the body tissue. Therefore, monitoring the patient’s temperature inside MRI is vital, but until now, a practical solution for temperature measurement did not exist. We show europium doped lanthanum oxysulphide (La2O2SEu) and terbium doped lanthanum oxysulphide (La2O2STb) are both temperature sensitive to a low temperature range of 1050°C when under ultraviolet (UV) excitation. The emission spectra and decay time characteristics of these phosphors were demonstrated. The results indicate that La2O2SEu has a quenching rate of 13.7m°C1 and 4m°C1 at 512nm and 538nm, respectively. In addition, La2O2STb has a lower quenching rate of 4.19m°C1 at 548nm due to its faster decay time.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615-2650 (1997).
    [CrossRef]
  2. A. G. Mignani and F. Baldini, “Biomedical sensors using optical fibres,” Rep. Prog. Phys. 59, 1-28 (1996).
    [CrossRef]
  3. K. A. Wickersheim and M. H. Sun, “Fiberoptic thermometry and its applications,” J. Microwave Power Electromagn. Energy 22, 85-94 (1987).
  4. R. M. Ranson, “Investigation into thermographic phosphors,” Ph.D. dissertation (The Nottingham Trent University, 1999).
  5. R. M. Ranson, E. Evangelou, and C. B. Thomas, “Modeling the fluorescent lifetime of Y2O3:Eu,” Appl. Phys. Lett. 72, 2663-2664 (1998).
    [CrossRef]
  6. R. M Ranson, C. B. Thomas, and M. R. Craven, “A thin film coating for phosphor thermography,” Meas. Sci. Technol. 9, 1947-1950 (1998).
    [CrossRef]
  7. M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).
  8. J. P. Feist and A. L. Heyes, “Development of the phosphor thermometry technique for applications in gas turbines,” presented at the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Spain, July 2000.
  9. L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
    [CrossRef]
  10. G. Wasner, J. Schattschneider, and R. Baron, “Skin temperature side differences: a diagnostic tool for CRPS?,” Pain 98, 19-26 (2002).
    [CrossRef] [PubMed]
  11. G. Webster and H. G. Drickamer, “High pressure studies of luminescence efficiency and lifetime in La2O2S:Eu and Y2O2S:Eu,” J. Chem. Phys. 72, 3740-3748 (1980).
    [CrossRef]
  12. W. H. Fonger and C. W. Struck, “Energy loss and energy storage from the Eu+3 charge-transfer states in Y and La oxysulfides,” J. Electrochem. Soc. 118, 273-280 (1971).
    [CrossRef]
  13. A. J. Simons, I. P. McClean, and R. Stevens, “Phosphors for remote thermograph sensing in lower temperature,” Electron. Lett. 32, 253-254 (1996).
    [CrossRef]
  14. C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+34fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515-4516 (1971).
    [CrossRef]
  15. L. M. Coyle and M. Gouterman, “Correcting lifetime measurements for temperature,” Sens. Actuators B 61, 92-99(1999).
    [CrossRef]
  16. A. Omrane, G. Juhlin, F. Ossler, and M. Alden, “Temperature measurements of single droplets by use of laser-induced phosphorescence,” Appl. Opt. 43, 3523-3529 (2004).
    [CrossRef] [PubMed]

2004

2003

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

2002

G. Wasner, J. Schattschneider, and R. Baron, “Skin temperature side differences: a diagnostic tool for CRPS?,” Pain 98, 19-26 (2002).
[CrossRef] [PubMed]

1999

L. M. Coyle and M. Gouterman, “Correcting lifetime measurements for temperature,” Sens. Actuators B 61, 92-99(1999).
[CrossRef]

1998

R. M. Ranson, E. Evangelou, and C. B. Thomas, “Modeling the fluorescent lifetime of Y2O3:Eu,” Appl. Phys. Lett. 72, 2663-2664 (1998).
[CrossRef]

R. M Ranson, C. B. Thomas, and M. R. Craven, “A thin film coating for phosphor thermography,” Meas. Sci. Technol. 9, 1947-1950 (1998).
[CrossRef]

1997

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615-2650 (1997).
[CrossRef]

1996

A. G. Mignani and F. Baldini, “Biomedical sensors using optical fibres,” Rep. Prog. Phys. 59, 1-28 (1996).
[CrossRef]

A. J. Simons, I. P. McClean, and R. Stevens, “Phosphors for remote thermograph sensing in lower temperature,” Electron. Lett. 32, 253-254 (1996).
[CrossRef]

1987

K. A. Wickersheim and M. H. Sun, “Fiberoptic thermometry and its applications,” J. Microwave Power Electromagn. Energy 22, 85-94 (1987).

1980

G. Webster and H. G. Drickamer, “High pressure studies of luminescence efficiency and lifetime in La2O2S:Eu and Y2O2S:Eu,” J. Chem. Phys. 72, 3740-3748 (1980).
[CrossRef]

1971

W. H. Fonger and C. W. Struck, “Energy loss and energy storage from the Eu+3 charge-transfer states in Y and La oxysulfides,” J. Electrochem. Soc. 118, 273-280 (1971).
[CrossRef]

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+34fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515-4516 (1971).
[CrossRef]

Alden, M.

Allison, S. W.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615-2650 (1997).
[CrossRef]

M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).

Baldini, F.

A. G. Mignani and F. Baldini, “Biomedical sensors using optical fibres,” Rep. Prog. Phys. 59, 1-28 (1996).
[CrossRef]

Baron, R.

G. Wasner, J. Schattschneider, and R. Baron, “Skin temperature side differences: a diagnostic tool for CRPS?,” Pain 98, 19-26 (2002).
[CrossRef] [PubMed]

Cates, M. B.

M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).

Coyle, L. M.

L. M. Coyle and M. Gouterman, “Correcting lifetime measurements for temperature,” Sens. Actuators B 61, 92-99(1999).
[CrossRef]

Craven, M. R.

R. M Ranson, C. B. Thomas, and M. R. Craven, “A thin film coating for phosphor thermography,” Meas. Sci. Technol. 9, 1947-1950 (1998).
[CrossRef]

Davies, T. J.

M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).

Drickamer, H. G.

G. Webster and H. G. Drickamer, “High pressure studies of luminescence efficiency and lifetime in La2O2S:Eu and Y2O2S:Eu,” J. Chem. Phys. 72, 3740-3748 (1980).
[CrossRef]

Evangelou, E.

R. M. Ranson, E. Evangelou, and C. B. Thomas, “Modeling the fluorescent lifetime of Y2O3:Eu,” Appl. Phys. Lett. 72, 2663-2664 (1998).
[CrossRef]

Feist, J. P.

J. P. Feist and A. L. Heyes, “Development of the phosphor thermometry technique for applications in gas turbines,” presented at the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Spain, July 2000.

Fonger, W. H.

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+34fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515-4516 (1971).
[CrossRef]

W. H. Fonger and C. W. Struck, “Energy loss and energy storage from the Eu+3 charge-transfer states in Y and La oxysulfides,” J. Electrochem. Soc. 118, 273-280 (1971).
[CrossRef]

Franks, L. A.

M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).

Gillies, G. T.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615-2650 (1997).
[CrossRef]

Gouterman, M.

L. M. Coyle and M. Gouterman, “Correcting lifetime measurements for temperature,” Sens. Actuators B 61, 92-99(1999).
[CrossRef]

Heyes, A. L.

J. P. Feist and A. L. Heyes, “Development of the phosphor thermometry technique for applications in gas turbines,” presented at the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Spain, July 2000.

Jandova, D.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

Jansky, L.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

Jansky, P.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

Juhlin, G.

Knizkova, I.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

Kunc, P.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

McClean, I. P.

A. J. Simons, I. P. McClean, and R. Stevens, “Phosphors for remote thermograph sensing in lower temperature,” Electron. Lett. 32, 253-254 (1996).
[CrossRef]

Mignani, A. G.

A. G. Mignani and F. Baldini, “Biomedical sensors using optical fibres,” Rep. Prog. Phys. 59, 1-28 (1996).
[CrossRef]

Nelson, M. A.

M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).

Noel, B. W.

M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).

Omrane, A.

Ossler, F.

Ranson, R. M

R. M Ranson, C. B. Thomas, and M. R. Craven, “A thin film coating for phosphor thermography,” Meas. Sci. Technol. 9, 1947-1950 (1998).
[CrossRef]

Ranson, R. M.

R. M. Ranson, E. Evangelou, and C. B. Thomas, “Modeling the fluorescent lifetime of Y2O3:Eu,” Appl. Phys. Lett. 72, 2663-2664 (1998).
[CrossRef]

R. M. Ranson, “Investigation into thermographic phosphors,” Ph.D. dissertation (The Nottingham Trent University, 1999).

Schattschneider, J.

G. Wasner, J. Schattschneider, and R. Baron, “Skin temperature side differences: a diagnostic tool for CRPS?,” Pain 98, 19-26 (2002).
[CrossRef] [PubMed]

Simons, A. J.

A. J. Simons, I. P. McClean, and R. Stevens, “Phosphors for remote thermograph sensing in lower temperature,” Electron. Lett. 32, 253-254 (1996).
[CrossRef]

Slovacek, K.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

Stevens, R.

A. J. Simons, I. P. McClean, and R. Stevens, “Phosphors for remote thermograph sensing in lower temperature,” Electron. Lett. 32, 253-254 (1996).
[CrossRef]

Struck, C. W.

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+34fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515-4516 (1971).
[CrossRef]

W. H. Fonger and C. W. Struck, “Energy loss and energy storage from the Eu+3 charge-transfer states in Y and La oxysulfides,” J. Electrochem. Soc. 118, 273-280 (1971).
[CrossRef]

Sun, M. H.

K. A. Wickersheim and M. H. Sun, “Fiberoptic thermometry and its applications,” J. Microwave Power Electromagn. Energy 22, 85-94 (1987).

Thomas, C. B.

R. M Ranson, C. B. Thomas, and M. R. Craven, “A thin film coating for phosphor thermography,” Meas. Sci. Technol. 9, 1947-1950 (1998).
[CrossRef]

R. M. Ranson, E. Evangelou, and C. B. Thomas, “Modeling the fluorescent lifetime of Y2O3:Eu,” Appl. Phys. Lett. 72, 2663-2664 (1998).
[CrossRef]

Vavra, V.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

Wasner, G.

G. Wasner, J. Schattschneider, and R. Baron, “Skin temperature side differences: a diagnostic tool for CRPS?,” Pain 98, 19-26 (2002).
[CrossRef] [PubMed]

Webster, G.

G. Webster and H. G. Drickamer, “High pressure studies of luminescence efficiency and lifetime in La2O2S:Eu and Y2O2S:Eu,” J. Chem. Phys. 72, 3740-3748 (1980).
[CrossRef]

Wickersheim, K. A.

K. A. Wickersheim and M. H. Sun, “Fiberoptic thermometry and its applications,” J. Microwave Power Electromagn. Energy 22, 85-94 (1987).

Appl. Opt.

Appl. Phys. Lett.

R. M. Ranson, E. Evangelou, and C. B. Thomas, “Modeling the fluorescent lifetime of Y2O3:Eu,” Appl. Phys. Lett. 72, 2663-2664 (1998).
[CrossRef]

Electron. Lett.

A. J. Simons, I. P. McClean, and R. Stevens, “Phosphors for remote thermograph sensing in lower temperature,” Electron. Lett. 32, 253-254 (1996).
[CrossRef]

J. Appl. Phys.

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+34fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515-4516 (1971).
[CrossRef]

J. Chem. Phys.

G. Webster and H. G. Drickamer, “High pressure studies of luminescence efficiency and lifetime in La2O2S:Eu and Y2O2S:Eu,” J. Chem. Phys. 72, 3740-3748 (1980).
[CrossRef]

J. Electrochem. Soc.

W. H. Fonger and C. W. Struck, “Energy loss and energy storage from the Eu+3 charge-transfer states in Y and La oxysulfides,” J. Electrochem. Soc. 118, 273-280 (1971).
[CrossRef]

J. Microwave Power Electromagn. Energy

K. A. Wickersheim and M. H. Sun, “Fiberoptic thermometry and its applications,” J. Microwave Power Electromagn. Energy 22, 85-94 (1987).

J. Therm. Biol.

L. Jansky, V. Vavra, P. Jansky, P. Kunc, I. Knizkova, D. Jandova, and K. Slovacek, “Skin temperature changes in humans induced by local peripheral cooling,” J. Therm. Biol. 28, 429-437 (2003).
[CrossRef]

Meas. Sci. Technol.

R. M Ranson, C. B. Thomas, and M. R. Craven, “A thin film coating for phosphor thermography,” Meas. Sci. Technol. 9, 1947-1950 (1998).
[CrossRef]

Pain

G. Wasner, J. Schattschneider, and R. Baron, “Skin temperature side differences: a diagnostic tool for CRPS?,” Pain 98, 19-26 (2002).
[CrossRef] [PubMed]

Rep. Prog. Phys.

A. G. Mignani and F. Baldini, “Biomedical sensors using optical fibres,” Rep. Prog. Phys. 59, 1-28 (1996).
[CrossRef]

Rev. Sci. Instrum.

S. W. Allison and G. T. Gillies, “Remote thermometry with thermographic phosphors: instrumentation and applications,” Rev. Sci. Instrum. 68, 2615-2650 (1997).
[CrossRef]

Sens. Actuators B

L. M. Coyle and M. Gouterman, “Correcting lifetime measurements for temperature,” Sens. Actuators B 61, 92-99(1999).
[CrossRef]

Other

R. M. Ranson, “Investigation into thermographic phosphors,” Ph.D. dissertation (The Nottingham Trent University, 1999).

M. B. Cates, S. W. Allison, L. A. Franks, M. A. Nelson, T. J. Davies, and B. W. Noel, Remote Thermometry of Moving Surfaces by Laser-Induced Fluorescence of Surface-Bonded Phosphor (Laser Institute of America, 1984).

J. P. Feist and A. L. Heyes, “Development of the phosphor thermometry technique for applications in gas turbines,” presented at the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Spain, July 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Example of single exponential decay profiles of La 2 O 2 S Eu at various temperatures under 337 nm excitation. The inset graph indicates a single exponential decay fitting with an accuracy of > 99.9 % .

Fig. 2
Fig. 2

Setup for photoluminescent and decay time experiment.

Fig. 3
Fig. 3

Typical emission spectrum for La 2 O 2 S Eu excited by a nitrogen laser at room temperature.

Fig. 4
Fig. 4

Decay time characteristics of La 2 O 2 S Eu at 512 nm and 538 nm under 337 nm excitation.

Fig. 5
Fig. 5

Typical emission spectrum for La 2 O 2 S Tb excited by a nitrogen laser ( 337 nm ) at room temperature.

Fig. 6
Fig. 6

Decay constant against temperature for different emission wavelengths of La 2 O 2 S Tb .

Tables (1)

Tables Icon

Table 1 Decay Time of La 2 O 2 S Tb Under 337 nm Excitation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 exp ( t τ ) ,
τ d = τ q exp [ Q ( T T Q ) ] .

Metrics