Abstract

We report high-throughput, nondispersive optical multiplexing of laser beams using a scanning galvanometer. We have utilized this technique for multispecies trace-gas detection using multiple quantum cascade laser photoacoustic spectroscopy. We demonstrate switching from one laser to another in less than 1 s, a performance level needed for a comprehensive multispecies sensor, and a high signal-to-noise ratio detection of five gaseous components, NH3, NO2, dimethyl methyl phosphonate (DMMP, a simulant for nerve agents), acetone, and ethylene glycol, in a room air gas mixture containing 3ppb of NH3, 8ppb of NO2, 20ppb of DMMP, 30ppb of acetone, and 40ppb of ethylene glycol.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180-2194 (1977).
    [CrossRef] [PubMed]
  2. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289, 281-283 (2000).
    [CrossRef] [PubMed]
  3. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948-964 (1990).
    [CrossRef]
  4. A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, “All-fiber zero-insertion-loss add-drop filter for wavelength-division multiplexing,” Opt. Lett. 23, 106-108 (1998).
    [CrossRef]
  5. K.-i. Kitayama, S. Hideyuki, and W. Naoya, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626(1999).
  6. G. Cincotti, M. S. Moreolo, and A. Neri, “All-optical multiplexing schemes for multiple access networks based on wavelet packet filter banks,” Proc. SPIE 5451, 475-486 (2004).
    [CrossRef]
  7. M. P. Buchin, “High-speed electro-optical multiplexer/demultiplexer,” U.S. patent 5,687,262 (11 November 1997).
  8. F. K. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2007), pp. 467-493.
  9. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  10. M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846-10849 (2006).
    [CrossRef] [PubMed]
  11. M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
    [CrossRef] [PubMed]
  12. I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404 (2007).
    [CrossRef] [PubMed]
  13. A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (3)

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
[CrossRef] [PubMed]

2004 (1)

G. Cincotti, M. S. Moreolo, and A. Neri, “All-optical multiplexing schemes for multiple access networks based on wavelet packet filter banks,” Proc. SPIE 5451, 475-486 (2004).
[CrossRef]

2000 (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289, 281-283 (2000).
[CrossRef] [PubMed]

1999 (1)

K.-i. Kitayama, S. Hideyuki, and W. Naoya, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626(1999).

1998 (1)

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948-964 (1990).
[CrossRef]

1977 (1)

Bakhirkin, Y.

F. K. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2007), pp. 467-493.

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948-964 (1990).
[CrossRef]

Buchin, M. P.

M. P. Buchin, “High-speed electro-optical multiplexer/demultiplexer,” U.S. patent 5,687,262 (11 November 1997).

Cincotti, G.

G. Cincotti, M. S. Moreolo, and A. Neri, “All-optical multiplexing schemes for multiple access networks based on wavelet packet filter banks,” Proc. SPIE 5451, 475-486 (2004).
[CrossRef]

Dunayevskiy, I.

Dunayevskyi, I. G.

M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
[CrossRef] [PubMed]

Faist, J.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Fan, J.

Gini, E.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Giovannini, M.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Go, R.

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404 (2007).
[CrossRef] [PubMed]

M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846-10849 (2006).
[CrossRef] [PubMed]

Hideyuki, S.

K.-i. Kitayama, S. Hideyuki, and W. Naoya, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626(1999).

Kewitsch, A. S.

Kitayama, K.-i.

K.-i. Kitayama, S. Hideyuki, and W. Naoya, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626(1999).

Kosterev, A.

F. K. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2007), pp. 467-493.

Maulini, R.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Moreolo, M. S.

G. Cincotti, M. S. Moreolo, and A. Neri, “All-optical multiplexing schemes for multiple access networks based on wavelet packet filter banks,” Proc. SPIE 5451, 475-486 (2004).
[CrossRef]

Mukherjee, A.

Naoya, W.

K.-i. Kitayama, S. Hideyuki, and W. Naoya, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626(1999).

Neri, A.

G. Cincotti, M. S. Moreolo, and A. Neri, “All-optical multiplexing schemes for multiple access networks based on wavelet packet filter banks,” Proc. SPIE 5451, 475-486 (2004).
[CrossRef]

Patel, C. K. N.

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404 (2007).
[CrossRef] [PubMed]

M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846-10849 (2006).
[CrossRef] [PubMed]

Prasanna, M.

Pushkarsky, M.

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846-10849 (2006).
[CrossRef] [PubMed]

Pushkarsky, M. B.

M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
[CrossRef] [PubMed]

Rakuljic, G. A.

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289, 281-283 (2000).
[CrossRef] [PubMed]

Tittel, F. K.

F. K. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2007), pp. 467-493.

Tomlinson, W. J.

Tsekoun, A.

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404 (2007).
[CrossRef] [PubMed]

M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846-10849 (2006).
[CrossRef] [PubMed]

Wang, X.

Willems, P. A.

Wysocki, G.

F. K. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2007), pp. 467-493.

Yariv, A.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948-964 (1990).
[CrossRef]

IEICE Trans. Fundamentals (1)

K.-i. Kitayama, S. Hideyuki, and W. Naoya, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626(1999).

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. B. Pushkarsky, I. G. Dunayevskyi, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630-19634(2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

G. Cincotti, M. S. Moreolo, and A. Neri, “All-optical multiplexing schemes for multiple access networks based on wavelet packet filter banks,” Proc. SPIE 5451, 475-486 (2004).
[CrossRef]

Science (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289, 281-283 (2000).
[CrossRef] [PubMed]

Other (2)

M. P. Buchin, “High-speed electro-optical multiplexer/demultiplexer,” U.S. patent 5,687,262 (11 November 1997).

F. K. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, “Semiconductor laser based trace gas sensor technology: recent advances and applications,” in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2007), pp. 467-493.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the optically multiplexed five QCL multi-gas sensor.

Fig. 2
Fig. 2

Mode-hop-free continuously tuned QCL-PAS spectral data of ammonia taken using the nondispersive multiplexer and a comparison of the QCL-PAS data with Fourier transform infrared spectrum of ammonia (PNNL reference data).

Fig. 3
Fig. 3

Photograph of the five QCL multiplexer.

Fig. 4
Fig. 4

Measured QCL-PAS detection of SO 2 and NO 2 via optical multiplexing.

Fig. 5
Fig. 5

Measured QCL-PAS detection of SO 2 , NO 2 , and NH 3 via optical multiplexing.

Fig. 6
Fig. 6

Measure multiplexer performance for the detection of NH 3 , NO 2 , dimethyl methyl phosphonate (DMMP, a simulant for nerve agents), acetone, and ethylene glycol in a mixture containing 3 ppb of NH 3 , 8 ppb of NO 2 , 20 ppb of DMMP, 30 ppb of acetone, and 40 ppb of ethylene glycol. Concentration determination of all five components is completed within 21     s of cycle time.

Metrics