Abstract

In this paper, an embedded metal-wire nanograting was fabricated and used to construct a multifunctional optical device. The basic function of the nanograting is as a broadband polarizing beam splitter. On the top of the nanograting surface, a homogeneity cladding layer was deposited, and metal wires were deposited in the grating trench. This multifunctional optical device based on the artificial material is designed with a very simple structure, but with the functions of a variable optical attenuator, an optical switch, and a variable optical power splitter. The experimental result as a variable optical power splitter is presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).
  2. K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281-283 (1978).
    [CrossRef]
  3. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
    [CrossRef]
  4. L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30, 1434-1436 (2005).
    [CrossRef] [PubMed]
  5. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6, 327-328 (1981).
    [CrossRef] [PubMed]
  6. H. Kim, J. Kim, U.-C. Paek, B. H. Lee, and K. T.Kim, “Tunable photonic crystal fiber coupler based on a side-polishing technique,” Opt. Lett. 29, 1194-1196 (2004).
    [CrossRef] [PubMed]
  7. R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An opto-VLSI reconfigurable broad-band optical splitter,” IEEE Photon. Technol. Lett. 17, 339-341 (2005).
    [CrossRef]

2005 (2)

L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30, 1434-1436 (2005).
[CrossRef] [PubMed]

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An opto-VLSI reconfigurable broad-band optical splitter,” IEEE Photon. Technol. Lett. 17, 339-341 (2005).
[CrossRef]

2004 (1)

2000 (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

1981 (1)

1978 (1)

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281-283 (1978).
[CrossRef]

Alameh, K. E.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An opto-VLSI reconfigurable broad-band optical splitter,” IEEE Photon. Technol. Lett. 17, 339-341 (2005).
[CrossRef]

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Crossland, W. A.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An opto-VLSI reconfigurable broad-band optical splitter,” IEEE Photon. Technol. Lett. 17, 339-341 (2005).
[CrossRef]

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).

Hill, K. O.

Kawasaki, S.

Kim, H.

Kim, J.

Kim, K. T.

Knop, K.

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281-283 (1978).
[CrossRef]

Lamont, R. G.

Lee, B. H.

Liu, W.

Paek, U.-C.

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Wang, Z.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An opto-VLSI reconfigurable broad-band optical splitter,” IEEE Photon. Technol. Lett. 17, 339-341 (2005).
[CrossRef]

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

Zheng, R.

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An opto-VLSI reconfigurable broad-band optical splitter,” IEEE Photon. Technol. Lett. 17, 339-341 (2005).
[CrossRef]

Zhou, L.

Appl. Phys. Lett. (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77, 927-929 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Zheng, Z. Wang, K. E. Alameh, and W. A. Crossland, “An opto-VLSI reconfigurable broad-band optical splitter,” IEEE Photon. Technol. Lett. 17, 339-341 (2005).
[CrossRef]

Opt. Commun. (1)

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281-283 (1978).
[CrossRef]

Opt. Lett. (3)

Other (1)

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of the embedded metal-wire nanograting, which consists of a series of fine parallel metallic lines embedded in substrate ( Si O 2 ).

Fig. 2
Fig. 2

Light polarized perpendicular (p beam) to the metal wires is largely transmitted through the nanograting and light polarized parallel (s beam) to the wires is reflected.

Fig. 3
Fig. 3

Multifunctional device based on embedded metal-wire nanograting.

Fig. 4
Fig. 4

Measured output power as a function of the retarder rotation when the device works as variable power splitter.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M 1 = ( cos α 0 ) ,
M 2 = ( 0 sin α ) .
M C = ( cos θ sin θ sin θ cos θ ) · ( e i · n e n e n o · π 0 0 e i · n o n e n o · π ) · ( cos θ sin θ sin θ cos θ ) .
M output 1 = ( sin α · ( cos 2 θ · e i · n e n e n o · π + sin 2 θ · e i · n o n e n o · π ) cos α · ( cos 2 θ · e i · n e n e n o · π + sin 2 θ · e i · n o n e n o · π ) ) ,
M output 2 = ( sin α · cos θ · sin θ · ( e i · n e n e n o · π e i · n o n e n o · π ) cos α · cos θ · sin θ · ( e i · n e n e n o · π e i · n o n e n o · π ) ) .
I output1 = | M output 1 | 2 = cos 2 2 θ ,
I output2 = | M output 2 | 2 = sin 2 2 θ and I output1 + I output2 1.

Metrics