Abstract

Dispersion of femtosecond laser pulses propagating in Ar, He, Kr, N2, Ne, Xe, and their mixtures is measured by spectrally and spatially resolved interferometry. By varying the gas pressure in a 4.5m long tube between 0.05mbar and ambient pressure, the first, second, and third order phase derivatives of broadband laser pulses are determined at 800nm under standard conditions. The dispersion of gases and gas mixtures obeys the Lorentz–Lorenz formula with an accuracy of 0.7%. Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas. These common form, two-term dispersion equations provide an accuracy between 4.1×109 (Ne) and 4.3×107 (Xe) for the refractive indices, from UV to near IR.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser-pulses in air,” Opt. Lett. 20, 73-75 (1995).
    [CrossRef] [PubMed]
  2. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582-3585 (2000).
    [CrossRef] [PubMed]
  3. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
    [CrossRef]
  4. C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
    [CrossRef] [PubMed]
  5. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
    [CrossRef]
  6. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47-189 (2007).
    [CrossRef]
  7. C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament,” Opt. Lett. 32, 868-870 (2007).
    [CrossRef] [PubMed]
  8. S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
    [CrossRef]
  9. C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
    [CrossRef]
  10. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  11. T. Szörényi and E. Fogarassy, “Pressure control of properties of pulsed laser deposited carbon and carbon nitride films,” J. Appl. Phys. 94, 2097-2101 (2003).
    [CrossRef]
  12. T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
    [CrossRef]
  13. B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966).
    [CrossRef]
  14. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature, and composition,” Appl. Opt. 6, 51-59 (1967).
    [CrossRef] [PubMed]
  15. E. R. Peck and K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62, 958-962 (1972).
    [CrossRef]
  16. P. E. Ciddor, “Refractive index of air: New equations for the visible and near infrared,” Appl. Opt. 35, 1566-1573 (1996).
    [CrossRef] [PubMed]
  17. K. P. Birch, “Precise determination of refractometric parameters for atmospheric gases,” J. Opt. Soc. Am. A 8, 647-651 (1991).
    [CrossRef]
  18. P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21-37 (1974).
    [CrossRef]
  19. C. R. Mansfield and E. R. Peck, “Dispersion of helium,” J. Opt. Soc. Am. 59, 199-203 (1969).
    [CrossRef]
  20. J. D. Hey, H. S. T. Driver, and D. B. Fish, “The refractrometry of helium and its measurements by laser interferometry,” Am. J. Phys. 56, 646-652 (1988).
    [CrossRef]
  21. E. R. Peck and D. J. Fisher, “Dispersion of argon,” J. Opt. Soc. Am. 54, 1362-1364 (1964).
    [CrossRef]
  22. U. Hohm and K. Kerl, “A Michelson twin interferometer for precise measurements of the refractive index of gases between 100 K and 1300 K,” Meas. Sci. Technol. 1, 329-336 (1990).
    [CrossRef]
  23. E. R. Peck and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56, 1059-1063 (1966).
    [CrossRef]
  24. A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. Roy. Soc. London Ser. A 259, 424-429 (1960).
    [CrossRef]
  25. W. C. Marlow, “Hakenmethode,” Appl. Opt. 6, 1715-1724 (1967).
    [CrossRef] [PubMed]
  26. H. J. Kim and B. W. James, “The use of Fourier transform techniques for the analysis of hook interferograms,” Opt. Commun. 118, 542-545 (1995).
    [CrossRef]
  27. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipőcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20, 788-790 (1995).
    [CrossRef] [PubMed]
  28. K. Misawa and T. Kobayashi, “Femtosecond Sagnac interferometer for phase spectroscopy,” Opt. Lett. 20, 1550-1552 (1995).
    [CrossRef] [PubMed]
  29. D. Meshulach, D. Yelin, and Y. Silberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33, 1969-1974 (1997).
    [CrossRef]
  30. A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427-443 (2002).
    [CrossRef]
  31. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486-488 (1996).
    [CrossRef] [PubMed]
  32. J. Calatroni, C. Sainz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. A 5, S207-S210 (2003).
    [CrossRef]
  33. B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
    [CrossRef]
  34. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006).
    [CrossRef] [PubMed]
  35. K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
    [CrossRef]
  36. K. Osvay, K. Varjú, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89, 565-572 (2007).
    [CrossRef]
  37. K. Osvay, M. Görbe, C. Griebig, and G. Steinmeyer, “A bandwidth-independent linear method for detection of carrier envelope offset phase,” Opt. Lett. 32, 3095-3097 (2007).
    [CrossRef] [PubMed]
  38. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008).
    [CrossRef]
  39. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  40. L. R. Pendrill, “Refractometry and gas density,” Metrologia 41, S40-S51 (2004).
    [CrossRef]
  41. M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 18, 977-979 (1993).
    [CrossRef] [PubMed]
  42. D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., (CRC Press, 2005).

2008 (1)

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008).
[CrossRef]

2007 (5)

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

K. Osvay, K. Varjú, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89, 565-572 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47-189 (2007).
[CrossRef]

C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament,” Opt. Lett. 32, 868-870 (2007).
[CrossRef] [PubMed]

K. Osvay, M. Görbe, C. Griebig, and G. Steinmeyer, “A bandwidth-independent linear method for detection of carrier envelope offset phase,” Opt. Lett. 32, 3095-3097 (2007).
[CrossRef] [PubMed]

2006 (4)

P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14, 11892-11900 (2006).
[CrossRef] [PubMed]

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

2005 (2)

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

2004 (2)

L. R. Pendrill, “Refractometry and gas density,” Metrologia 41, S40-S51 (2004).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

2003 (2)

T. Szörényi and E. Fogarassy, “Pressure control of properties of pulsed laser deposited carbon and carbon nitride films,” J. Appl. Phys. 94, 2097-2101 (2003).
[CrossRef]

J. Calatroni, C. Sainz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. A 5, S207-S210 (2003).
[CrossRef]

2002 (1)

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

2000 (1)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582-3585 (2000).
[CrossRef] [PubMed]

1999 (1)

T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
[CrossRef]

1997 (1)

D. Meshulach, D. Yelin, and Y. Silberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33, 1969-1974 (1997).
[CrossRef]

1996 (2)

1995 (5)

1993 (1)

1991 (1)

1990 (1)

U. Hohm and K. Kerl, “A Michelson twin interferometer for precise measurements of the refractive index of gases between 100 K and 1300 K,” Meas. Sci. Technol. 1, 329-336 (1990).
[CrossRef]

1988 (1)

J. D. Hey, H. S. T. Driver, and D. B. Fish, “The refractrometry of helium and its measurements by laser interferometry,” Am. J. Phys. 56, 646-652 (1988).
[CrossRef]

1974 (1)

P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21-37 (1974).
[CrossRef]

1972 (1)

1969 (1)

1967 (2)

1966 (2)

1964 (1)

1960 (1)

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. Roy. Soc. London Ser. A 259, 424-429 (1960).
[CrossRef]

Akturk, S.

Allard, J.-F.

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

Arias, I.

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

Asaki, M. T.

Baltuska, A.

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

Berge, L.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Biegert, J.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Birch, K. P.

Blaga, C. I.

Bor, Z.

Börzsönyi, A.

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008).
[CrossRef]

Börzsönyi, Á.

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

Bowlan, P.

Braun, A.

Calatroni, J.

J. Calatroni, C. Sainz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. A 5, S207-S210 (2003).
[CrossRef]

Chériaux, G.

Chirla, R.

Chrisey, D. B.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

Ciddor, P. E.

Colosimo, P.

Cornet, A.

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47-189 (2007).
[CrossRef]

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Cryan, J.

Dalgarno, A.

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. Roy. Soc. London Ser. A 259, 424-429 (1960).
[CrossRef]

Diaz, V.

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

DiMauro, L. F.

Doumy, G.

Driver, H. S. T.

J. D. Hey, H. S. T. Driver, and D. B. Fish, “The refractrometry of helium and its measurements by laser interferometry,” Am. J. Phys. 56, 646-652 (1988).
[CrossRef]

Du, D.

Edlén, B.

B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966).
[CrossRef]

Escalona, R.

J. Calatroni, C. Sainz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. A 5, S207-S210 (2003).
[CrossRef]

Fish, D. B.

J. D. Hey, H. S. T. Driver, and D. B. Fish, “The refractrometry of helium and its measurements by laser interferometry,” Am. J. Phys. 56, 646-652 (1988).
[CrossRef]

Fisher, D. J.

Fluck, R.

Fogarassy, E.

T. Szörényi and E. Fogarassy, “Pressure control of properties of pulsed laser deposited carbon and carbon nitride films,” J. Appl. Phys. 94, 2097-2101 (2003).
[CrossRef]

T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
[CrossRef]

Fuchs, C.

T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
[CrossRef]

Gabolde, P.

Gaeta, A. L.

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582-3585 (2000).
[CrossRef] [PubMed]

Garvey, D.

Görbe, M.

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008).
[CrossRef]

K. Osvay, M. Görbe, C. Griebig, and G. Steinmeyer, “A bandwidth-independent linear method for detection of carrier envelope offset phase,” Opt. Lett. 32, 3095-3097 (2007).
[CrossRef] [PubMed]

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

Griebig, C.

Hauri, C. P.

C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament,” Opt. Lett. 32, 868-870 (2007).
[CrossRef] [PubMed]

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Helbing, F. W.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Hey, J. D.

J. D. Hey, H. S. T. Driver, and D. B. Fish, “The refractrometry of helium and its measurements by laser interferometry,” Am. J. Phys. 56, 646-652 (1988).
[CrossRef]

Hohm, U.

U. Hohm and K. Kerl, “A Michelson twin interferometer for precise measurements of the refractive index of gases between 100 K and 1300 K,” Meas. Sci. Technol. 1, 329-336 (1990).
[CrossRef]

Hommet, J.

T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
[CrossRef]

Houde, D.

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

Huang, C.-P.

Hubler, G. K.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

James, B. W.

H. J. Kim and B. W. James, “The use of Fourier transform techniques for the analysis of hook interferograms,” Opt. Commun. 118, 542-545 (1995).
[CrossRef]

Joffre, M.

Kalashnikov, M. P.

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

Kapteyn, H. C.

Keller, U.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486-488 (1996).
[CrossRef] [PubMed]

Kerl, K.

U. Hohm and K. Kerl, “A Michelson twin interferometer for precise measurements of the refractive index of gases between 100 K and 1300 K,” Meas. Sci. Technol. 1, 329-336 (1990).
[CrossRef]

Khanna, B. N.

Kim, H. J.

H. J. Kim and B. W. James, “The use of Fourier transform techniques for the analysis of hook interferograms,” Opt. Commun. 118, 542-545 (1995).
[CrossRef]

Kingston, A. E.

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. Roy. Soc. London Ser. A 259, 424-429 (1960).
[CrossRef]

Kobayashi, T.

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

K. Misawa and T. Kobayashi, “Femtosecond Sagnac interferometer for phase spectroscopy,” Opt. Lett. 20, 1550-1552 (1995).
[CrossRef] [PubMed]

Kopf, D.

Korn, G.

Kornelis, W.

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Kovács, A. P.

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008).
[CrossRef]

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

A. P. Kovács, K. Osvay, Z. Bor, and R. Szipőcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20, 788-790 (1995).
[CrossRef] [PubMed]

Kurdi, G.

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

K. Osvay, K. Varjú, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89, 565-572 (2007).
[CrossRef]

Le Normand, F.

T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
[CrossRef]

Lederer, F.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Leonard, P. J.

P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21-37 (1974).
[CrossRef]

Lepetit, L.

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., (CRC Press, 2005).

Liu, X.

Lopez-Martens, R. B.

C. P. Hauri, R. B. Lopez-Martens, C. I. Blaga, K. D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A. M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L. F. DiMauro, and E. P. Power, “Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament,” Opt. Lett. 32, 868-870 (2007).
[CrossRef] [PubMed]

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Mansfield, C. R.

March, A. M.

Marlow, W. C.

McGresham, K.

Mendez, C.

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

Merano, M.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Meshulach, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33, 1969-1974 (1997).
[CrossRef]

Misawa, K.

Morris, D.

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

Moser, M.

Mourou, G.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser-pulses in air,” Opt. Lett. 20, 73-75 (1995).
[CrossRef] [PubMed]

Murnane, M. M.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47-189 (2007).
[CrossRef]

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Osvay, K.

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008).
[CrossRef]

K. Osvay, M. Görbe, C. Griebig, and G. Steinmeyer, “A bandwidth-independent linear method for detection of carrier envelope offset phase,” Opt. Lett. 32, 3095-3097 (2007).
[CrossRef] [PubMed]

K. Osvay, K. Varjú, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89, 565-572 (2007).
[CrossRef]

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

A. P. Kovács, K. Osvay, Z. Bor, and R. Szipőcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20, 788-790 (1995).
[CrossRef] [PubMed]

Owens, J. C.

Parys, B.

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

Peck, E. R.

Pendrill, L. R.

L. R. Pendrill, “Refractometry and gas density,” Metrologia 41, S40-S51 (2004).
[CrossRef]

Pipin, C.

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

Plaja, L.

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

Power, E. P.

Reeder, K.

Rey, G.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Roedig, C.

Roman, J. San

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

Roso, L.

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

Ruiz, C.

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

Sainz, C.

J. Calatroni, C. Sainz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. A 5, S207-S210 (2003).
[CrossRef]

Schnurer, M.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Schultz, K. D.

Shreenath, A.

Silberberg, Y.

D. Meshulach, D. Yelin, and Y. Silberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33, 1969-1974 (1997).
[CrossRef]

Sistrunk, E.

Skupin, S.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Sokollik, T.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Squier, J.

Steinmeyer, G.

K. Osvay, M. Görbe, C. Griebig, and G. Steinmeyer, “A bandwidth-independent linear method for detection of carrier envelope offset phase,” Opt. Lett. 32, 3095-3097 (2007).
[CrossRef] [PubMed]

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Stibenz, G.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Szipocs, R.

Szörényi, T.

T. Szörényi and E. Fogarassy, “Pressure control of properties of pulsed laser deposited carbon and carbon nitride films,” J. Appl. Phys. 94, 2097-2101 (2003).
[CrossRef]

T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
[CrossRef]

Tate, J.

Trebino, R.

Trisorio, A.

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

Varjú, K.

K. Osvay, K. Varjú, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89, 565-572 (2007).
[CrossRef]

Wheeler, J.

Yelin, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33, 1969-1974 (1997).
[CrossRef]

Zhang, G.

Zhavoronkov, N.

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Zhou, J.

Am. J. Phys. (1)

J. D. Hey, H. S. T. Driver, and D. B. Fish, “The refractrometry of helium and its measurements by laser interferometry,” Am. J. Phys. 56, 646-652 (1988).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

T. Szörényi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, “Chemical analysis of a-CNx thin films synthesized by nanosecond and femtosecond pulsed laser deposition,” Appl. Phys. A 69, S941-S944 (1999).
[CrossRef]

Appl. Phys. B (3)

A. Baltuska and T. Kobayashi, “Adaptive shaping of two-cycle visible pulses using a flexible mirror,” Appl. Phys. B 75, 427-443 (2002).
[CrossRef]

K. Osvay, Á. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Kalashnikov, “Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar,” Appl. Phys. B 87, 457-461 (2007).
[CrossRef]

K. Osvay, K. Varjú, and G. Kurdi, “High order dispersion control for femtosecond CPA lasers,” Appl. Phys. B 89, 565-572 (2007).
[CrossRef]

Appl. Phys. B. (1)

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Appl. Phys. B. 79673-677 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

C. P. Hauri, A. Trisorio, M. Merano, G. Rey, R. B. Lopez-Martens, and G. Mourou, “Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz,” Appl. Phys. Lett. 89, 151125 (2006).
[CrossRef]

At. Data Nucl. Data Tables (1)

P. J. Leonard, “Refractive indices, Verdet constants, and polarizabilities of the inert gases,” At. Data Nucl. Data Tables 14, 21-37 (1974).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Meshulach, D. Yelin, and Y. Silberberg, “White light dispersion measurements by one- and two-dimensional spectral interference,” IEEE J. Quantum Electron. 33, 1969-1974 (1997).
[CrossRef]

J. Appl. Phys. (1)

T. Szörényi and E. Fogarassy, “Pressure control of properties of pulsed laser deposited carbon and carbon nitride films,” J. Appl. Phys. 94, 2097-2101 (2003).
[CrossRef]

J. Mod. Opt. (1)

A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultra-short laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53, 75-85 (2006).
[CrossRef]

J. Opt. A (2)

J. Calatroni, C. Sainz, and R. Escalona, “The stationary phase in spectrally resolved white-light interferometry as a refractometry tool,” J. Opt. A 5, S207-S210 (2003).
[CrossRef]

B. Parys, J.-F. Allard, D. Morris, C. Pipin, D. Houde, and A. Cornet, “Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses,” J. Opt. A 7, 249-254 (2005).
[CrossRef]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

U. Hohm and K. Kerl, “A Michelson twin interferometer for precise measurements of the refractive index of gases between 100 K and 1300 K,” Meas. Sci. Technol. 1, 329-336 (1990).
[CrossRef]

Metrologia (2)

B. Edlén, “The refractive index of air,” Metrologia 2, 71-80 (1966).
[CrossRef]

L. R. Pendrill, “Refractometry and gas density,” Metrologia 41, S40-S51 (2004).
[CrossRef]

Opt. Commun. (2)

A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, “Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry,” Opt. Commun. 281, 3051-3061 (2008).
[CrossRef]

H. J. Kim and B. W. James, “The use of Fourier transform techniques for the analysis of hook interferograms,” Opt. Commun. 118, 542-545 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47-189 (2007).
[CrossRef]

Phys. Rev. E (1)

S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnurer, N. Zhavoronkov, and G. Steinmeyer, “Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations,” Phys. Rev. E 74, 056604 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582-3585 (2000).
[CrossRef] [PubMed]

C. Ruiz, J. San Roman, C. Mendez, V. Diaz, L. Plaja, I. Arias, and L. Roso, “Observation of spontaneous self-channeling of light in air below the collapse threshold,” Phys. Rev. Lett. 95, 053905 (2005).
[CrossRef] [PubMed]

Proc. Roy. Soc. London Ser. A (1)

A. Dalgarno and A. E. Kingston, “The refractive indices and Verdet constants of the inert gases,” Proc. Roy. Soc. London Ser. A 259, 424-429 (1960).
[CrossRef]

Other (2)

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., (CRC Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: the spectrally and spatially resolved interferometer consisted of a Mach–Zehnder interferometer, formed between the beam splitters BS1 and BS2, and the spectrograph. The spectrally and spatially resolved phase map is obtained from the recorded interferograms.

Fig. 2
Fig. 2

Specific GD at 800 nm for (a) low and (b) high dispersion gases versus pressure.

Fig. 3
Fig. 3

Specific GDD at 800 nm for (a) low and (b) high dispersion gases versus pressure.

Fig. 4
Fig. 4

Measured (+) and calculated (dashed curve) GDD of (a) He and N 2 , (b) Ne and N 2 , and (c) Xe and N 2 mixtures.

Fig. 5
Fig. 5

Differences of the refractive indices from the new Sellmeier equations for (a) low, (b) medium, and (c) high dispersion gases. Temperature and pressure conditions are taken from [18, 23, 42] and are 0 ° C and 1013.15 mbar s for each case, except for the air and N 2 , where the temperature is 15 ° C .

Tables (2)

Tables Icon

Table 1 Dispersion Coefficients of the Measured Gases, the Temperature of the Laboratory Air at the Time of the Measurement, and the Calculated Lorentz–Lorenz Constants at 800 nm, 1000 mbars, and 20 ° C

Tables Icon

Table 2 Coefficients of Sellmeier Equations at p 0 = 1000 mbars and T 0 = 0 ° C for Each Gas and the Corresponding Standard Deviation of the Refractive Indices [18, 23, 42] from the Data Given by the Appropriate Sellmeier Equation

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( y , ω ) = I R ( y , ω ) + I S ( y , ω ) + 2 I R ( y , ω ) I S ( y , ω ) cos [ Δ φ ( y , ω ) ] ,
Δ φ ( y , ω ) = φ R ( ω ) φ S ( ω ) + ω · n air ( ω ) c 2 γ ( y y 0 )
φ obj ( ω ) = Δ φ ( 0 ) ( y , ω ) Δ φ ( 1 ) ( y , ω ) + ω · n air ( ω ) c { obj + δ L } .
φ obj ( ω ) = φ obj ( ω 0 ) + GD obj Δ ω + 1 2 GDD obj Δ ω 2 + 1 6 TOD obj Δ ω 3 + ,
GD obj ( p ) = Δ GD ( p 0 ) Δ GD ( p ) + SGD air ( p ) · δ L ( p ) + obj c , GDD obj ( p ) = Δ GDD ( p 0 ) Δ GDD ( p ) + SGDD air ( p ) · δ L ( p ) , TOD obj ( p ) = Δ TOD ( p 0 ) Δ TOD ( p ) + STOD air ( p ) · δ L ( p ) ,
n 2 1 n 2 + 2 = p Z R T m x m A m = ρ · L C ,
L C ( ω ) = m x m A m ( ω ) m x m M m .
n ( ω , p ) 1 = 3 p 2 R T m x m A m ( ω ) ,
SGD ( ω , p ) = 1 c + 3 p 2 c R T m x m ( ω d A m ( ω ) d ω + A m ( ω ) ) ,
SGDD ( ω , p ) = 3 p 2 c R T m x m ( 2 d A m ( ω ) d ω + ω d 2 A m ( ω ) d ω 2 ) ,
STOD ( ω , p ) = 3 p 2 c R T m x m ( 3 d 2 A m ( ω ) d ω 2 + ω d 3 A m ( ω ) d ω 3 ) .
n mixture ( ω , p 1 , p N ) 1 = m = 1 N ( n m ( ω , p m ) 1 ) ,
SGD mixture ( ω , p 1 , , p N ) = 1 c + m = 1 N ( SGD m ( ω , p m ) 1 c ) , SGDD mixture ( ω , p 1 , , p N ) = m = 1 N SGDD m ( ω , p m ) , STOD mixture ( ω , p 1 , , p N ) = m = 1 N STOD m ( ω , p m ) ,
n 2 ( λ , p , T ) 1 = p p 0 · T 0 T · [ B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 ] p 0 , T 0

Metrics