Abstract

An electromagnetically induced Bragg reflection with a stationary coupling field in an Rb vapor cell with a 6.67kPa neon buffer gas was studied. When the coupling field was spatially modulated as a stationary wave, a transmission reduction of the probe field was observed, while simultaneously a reflected probe field was detected in the backward direction. Instead of absorbing a fraction of the probe laser in the Rb vapor, the modulated electromagnetically induced transparency medium reflected it, corresponding to a Bragg reflection. The spectrum in the 5S1/25P1/2 Λ-type system of Rb87 atoms was investigated as a function of the coupling laser frequency detuning, the stationary coupling laser power, the vapor cell temperature, and the coupling laser power ratio.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596 (1991).
    [CrossRef] [PubMed]
  2. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
    [CrossRef] [PubMed]
  3. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936-1938 (1996).
    [CrossRef] [PubMed]
  4. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
    [CrossRef]
  5. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995).
    [CrossRef] [PubMed]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  7. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
    [CrossRef] [PubMed]
  8. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457-472(2003).
    [CrossRef]
  9. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
    [CrossRef] [PubMed]
  10. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
    [CrossRef] [PubMed]
  11. D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3, 227-234 (2007).
    [CrossRef]
  12. T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
    [CrossRef] [PubMed]
  13. H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338-1344 (1998).
    [CrossRef]
  14. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
    [CrossRef]
  15. G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
    [CrossRef]
  16. Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials,” Phys. Rev. A 57, 4919-4924 (1998).
    [CrossRef]
  17. Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetically induced photonic bandgap,” Phys. Rev. A 60, 712-714 (1999).
    [CrossRef]
  18. A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
    [CrossRef] [PubMed]
  19. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
    [CrossRef] [PubMed]
  20. X. M. Su and B. S. Ham, “Dynamic control of the photonic bandgap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
    [CrossRef]
  21. X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007).
    [CrossRef]
  22. D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76, 053828 (2007).
    [CrossRef]

2007 (3)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3, 227-234 (2007).
[CrossRef]

X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007).
[CrossRef]

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76, 053828 (2007).
[CrossRef]

2005 (1)

X. M. Su and B. S. Ham, “Dynamic control of the photonic bandgap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

2003 (6)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457-472(2003).
[CrossRef]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

2002 (2)

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

1999 (2)

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetically induced photonic bandgap,” Phys. Rev. A 60, 712-714 (1999).
[CrossRef]

1998 (2)

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials,” Phys. Rev. A 57, 4919-4924 (1998).
[CrossRef]

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338-1344 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
[CrossRef]

1996 (1)

1995 (2)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Allred, J. C.

T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

André, A.

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

Artoni, M.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Budker, D.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3, 227-234 (2007).
[CrossRef]

Cardoso, G. C.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

Cataliotti, F.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Duan, L.-M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Ham, B. S.

X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007).
[CrossRef]

X. M. Su and B. S. Ham, “Dynamic control of the photonic bandgap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Imamoglu, A.

H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936-1938 (1996).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Kim, J. B.

X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007).
[CrossRef]

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Kornack, T. W.

T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Kuzmich, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Li, Y.

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338-1344 (1998).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Ling, H.

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338-1344 (1998).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457-472(2003).
[CrossRef]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

Matsko, A.

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetically induced photonic bandgap,” Phys. Rev. A 60, 712-714 (1999).
[CrossRef]

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials,” Phys. Rev. A 57, 4919-4924 (1998).
[CrossRef]

Matsko, A. B.

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76, 053828 (2007).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

Ottaviani, C.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Romalis, M. V.

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3, 227-234 (2007).
[CrossRef]

T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Rostovtsev, Y.

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetically induced photonic bandgap,” Phys. Rev. A 60, 712-714 (1999).
[CrossRef]

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials,” Phys. Rev. A 57, 4919-4924 (1998).
[CrossRef]

Schmidt, H.

Scully, M.

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetically induced photonic bandgap,” Phys. Rev. A 60, 712-714 (1999).
[CrossRef]

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials,” Phys. Rev. A 57, 4919-4924 (1998).
[CrossRef]

Strekalov, D. V.

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76, 053828 (2007).
[CrossRef]

Su, X. M.

X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007).
[CrossRef]

X. M. Su and B. S. Ham, “Dynamic control of the photonic bandgap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

Tabosa, J. W. R.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

Tombezisi, P.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Vitali, D.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Xiao, M.

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338-1344 (1998).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Yu, N.

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76, 053828 (2007).
[CrossRef]

Zhuo, Z. C.

X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

J. Korean Phys. Soc. (1)

X. M. Su, Z. C. Zhuo, B. S. Ham, and J. B. Kim, “Temporal compression for a weak pulse using quantum coherence,” J. Korean Phys. Soc. 51, 48-51 (2007).
[CrossRef]

Nature (4)

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

Nature (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Nature (4)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Nature Phys. (1)

D. Budker and M. V. Romalis, “Optical magnetometry,” Nature Phys. 3, 227-234 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (7)

H. Ling, Y. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338-1344 (1998).
[CrossRef]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[CrossRef]

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials,” Phys. Rev. A 57, 4919-4924 (1998).
[CrossRef]

Y. Rostovtsev, A. Matsko, and M. Scully, “Electromagnetically induced photonic bandgap,” Phys. Rev. A 60, 712-714 (1999).
[CrossRef]

X. M. Su and B. S. Ham, “Dynamic control of the photonic bandgap using quantum coherence,” Phys. Rev. A 71, 013821 (2005).
[CrossRef]

D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76, 053828 (2007).
[CrossRef]

Phys. Rev. Lett. (5)

K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically Induced Transparency: Propagation Dynamics,” Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36-42 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457-472(2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy diagram of the 5 S 1 / 2 5 P 1 / 2 transition of Rb 87 atoms. The L C laser is the coupling laser driving the stationary wave in the 5 S 1 / 2 ( F = 2 ) 5 P 1 / 2 ( F = 2 ) transition; the L P laser is the probe laser in the 5 S 1 / 2 ( F = 1 ) 5 P 1 / 2 ( F = 2 ) transition.

Fig. 2
Fig. 2

Experimental setup used to observe the EIBR and transmission signal of the probe laser. M, mirror; BS, beam splitter; ND filter, neutral density filter; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing beam splitter; PD1, Si photodiode for the probe laser transmission signal; PD2, Si photodiode for the EIBR.

Fig. 3
Fig. 3

Comparison of the EIT and EIBR in the 5 S 1 / 2 ( F = 2 ) 5 P 1 / 2 ( F = 2 ) 5 S 1 / 2 ( F = 1 ) transition of Rb 87 atoms: (i) the EIT with the coupling laser copropagated with the probe laser, (ii) the transmission signal, and (iii) the reflection signal with the coupling laser driving the stationary wave.

Fig. 4
Fig. 4

Measured transmission and reflection spectra as a function of the Rb vapor cell temperature: (a) transmission signals, (b) reflection signals, and (c) analysis of the relative magnitude of the transmission (dark squares) and reflection (circles) signals.

Fig. 5
Fig. 5

Measured transmission and reflection spectra as a function of the stationary coupling L C power: (a) transmission signals, (b) reflection signals, and (c) analysis of the relative magnitude of the transmission (dark squares) and reflection (circles) signals.

Fig. 6
Fig. 6

Measured transmission and reflection spectra as a function of the power ratio of the two coupling lasers: (a) transmission signals, (b) reflection signals, and (c) analysis of the relative magnitude of the transmission (dark squares) and reflection (circles) signals.

Fig. 7
Fig. 7

Measured (a) transmission and (b) reflection spectra as a function of the frequency detuning of the coupling laser.

Metrics