Abstract

We measured bulk and surface dielectric breakdown thresholds of pure silica for 14ps and 8ns pulses of 1064nm light. The thresholds are sharp and reproducible. For the 8ns pulses the bulk threshold irradiance is 4.75±0.25kW/μm2. The threshold is approximately three times higher for 14ps pulses. For 8ns pulses the input surface damage threshold can be made equal to the bulk threshold by applying an alumina or silica surface polish.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102-15115 (1992).
    [CrossRef]
  2. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
    [CrossRef]
  3. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
    [CrossRef]
  4. M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1144 (1989).
  5. L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and P. N. Rogovtsev, “Influence of the mode composition of laser radiation on the optical breakdown of silicate glasses,” Sov. J. Quantum Electron. 14, 226-229 (1984).
    [CrossRef]
  6. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321-330 (2002).
    [CrossRef]
  7. L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
    [CrossRef]
  8. S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
    [CrossRef]
  9. D. W. Fradin and M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157-159 (1973).
    [CrossRef]
  10. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163-10171 (2005).
    [CrossRef]
  11. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. B 18, 2607-2616 (2001).
    [CrossRef]
  12. E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144-2151 (1981).
    [CrossRef]
  13. H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
    [CrossRef]
  14. D. Kitriotis and L. D. Merkle, “Multiple pulse laser-induced damage phenomena in silicates,” Appl. Opt. 28, 949-958(1989).
  15. L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772-775 (1984).
    [CrossRef]
  16. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
    [CrossRef]
  17. T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
    [CrossRef]
  18. J. Bude, G. Guss, M. Mathews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
    [CrossRef]
  19. A. M. Rubenchik and M. D. Feit, “Initiation, growth and mitigation of UV laser induced damage in fused silica,” Proc. SPIE 4679, 79-95 (2002).
    [CrossRef]
  20. X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711-2713 (1989).
    [CrossRef]
  21. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
    [CrossRef]
  22. N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266 nm and longer wavelengths,” Appl. Opt. 38, 2510-2515 (1999).
    [CrossRef]
  23. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
    [CrossRef]
  24. R. R. Austin, R. Michaud, A. H. Guenther, and J. Putman, “Effects of structure, composition, and stress on the laser damage threshold of homogeneous and inhomogeneous single films and multilayers,” Appl. Opt. 12, 665-676 (1973).
  25. T. R. Moore, G. L. Fischer, and R. W. Boyd, “Measurement of the power distribution during stimulated Brillouin scattering with focused Gaussian beams,” J. Mod. Opt. 45, 735-745(1998).
  26. H. Yoshida, H. Fujita, and M. Nakatsuka, “Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage,” Opt. Eng. 36, 2557-2562 (1997).
    [CrossRef]
  27. J. M. Sajer, “Stimulated Brillouin scattering and front surface damage,” Proc. SPIE 5273, 129-135 (2004).
    [CrossRef]
  28. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402-2411 (1989).
  29. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
    [CrossRef]
  30. E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862-868 (1969).
    [CrossRef]
  31. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
    [CrossRef]
  32. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
    [CrossRef]
  33. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
    [CrossRef]
  34. J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
    [CrossRef]
  35. R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2003).
  36. J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57-72 (1969).
    [CrossRef]
  37. R. J. Gehr and A. V. Smith, “Separated-beam nonphase-matched second harmonic method of characterizing nonlinear optical crystals,” J. Opt. Soc. Am. B 15, 2298-2307 (1998).
    [CrossRef]
  38. V. I. Talanov, “Focusing of light in cubic media,” JETP Lett. 11, 199-201 (1970).
  39. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  40. A. E. Siegman, Lasers (University Science Books, 1986).
  41. E. L. Buckland, “Mode-profile dependence of the electrostrictive response in fibers,” Opt. Lett. 24, 872-874 (1999).
    [CrossRef]
  42. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350(1989).
    [CrossRef]
  43. G. Rodriguez and A. J. Taylor, “Measurement of cross-phase modulation in optical materials through the direct measurement of the optical phase change,” Opt. Lett. 23, 858-860 (1998).
    [CrossRef]
  44. T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377-1382 (2004).
    [CrossRef]
  45. F. A. Oguama, H. Garcia, and A. M. Johnson, “Simultaneous measurement of the Raman gain coefficient and the nonlinear refractive index of optical fibers: theory and experiment,” J. Opt. Soc. Am. B 22, 426-436 (2005).
    [CrossRef]
  46. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546-550 (1998).
    [CrossRef]
  47. A. Melloni, V. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691-693 (1998).
    [CrossRef]
  48. A. C. Liu, M. J. F. Diggonet, and G. S. Kino, “Measurement of the dc Kerr and electrostrictive phase modulation in silica,” J. Opt. Soc. Am. B 18, 187-194 (2001).
    [CrossRef]
  49. K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257-259 (1994).
  50. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  51. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef]
  52. Y.-L. Chen, J. W. L. Lewis, and C. Parriger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91-103 (2000).
    [CrossRef]
  53. P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
    [CrossRef]
  54. Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
    [CrossRef]
  55. S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
    [CrossRef]
  56. M. Li, S. Menon, J. P. Nibarger, and S. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394-2397 (1999).
    [CrossRef]
  57. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
    [CrossRef]
  58. F. Quere, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138-144 (2001).
    [CrossRef]
  59. G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Ultrafast processes in laser irradiated wide bandgap insulators,” Appl. Surf. Sci. 109-110, 36-42 (1997).
    [CrossRef]
  60. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef]
  61. H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
    [CrossRef]
  62. J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156-3166 (2002).
    [CrossRef]
  63. T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
    [CrossRef]
  64. J.-Y. Natoli, B. Bertussi, and M. Commandre, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30, 1315-1317 (2005).
    [CrossRef]
  65. L. D. Merkle and D. Kitriotis, “Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass,” Phys. Rev. B 38, 1473-1482 (1988).
    [CrossRef]

2007 (3)

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

J. Bude, G. Guss, M. Mathews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

2006 (3)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

2005 (5)

2004 (5)

T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377-1382 (2004).
[CrossRef]

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

J. M. Sajer, “Stimulated Brillouin scattering and front surface damage,” Proc. SPIE 5273, 129-135 (2004).
[CrossRef]

2002 (3)

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321-330 (2002).
[CrossRef]

A. M. Rubenchik and M. D. Feit, “Initiation, growth and mitigation of UV laser induced damage in fused silica,” Proc. SPIE 4679, 79-95 (2002).
[CrossRef]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156-3166 (2002).
[CrossRef]

2001 (3)

A. C. Liu, M. J. F. Diggonet, and G. S. Kino, “Measurement of the dc Kerr and electrostrictive phase modulation in silica,” J. Opt. Soc. Am. B 18, 187-194 (2001).
[CrossRef]

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. B 18, 2607-2616 (2001).
[CrossRef]

F. Quere, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138-144 (2001).
[CrossRef]

2000 (1)

Y.-L. Chen, J. W. L. Lewis, and C. Parriger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91-103 (2000).
[CrossRef]

1999 (4)

M. Li, S. Menon, J. P. Nibarger, and S. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394-2397 (1999).
[CrossRef]

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
[CrossRef]

E. L. Buckland, “Mode-profile dependence of the electrostrictive response in fibers,” Opt. Lett. 24, 872-874 (1999).
[CrossRef]

N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266 nm and longer wavelengths,” Appl. Opt. 38, 2510-2515 (1999).
[CrossRef]

1998 (6)

1997 (4)

H. Yoshida, H. Fujita, and M. Nakatsuka, “Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage,” Opt. Eng. 36, 2557-2562 (1997).
[CrossRef]

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
[CrossRef]

T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Ultrafast processes in laser irradiated wide bandgap insulators,” Appl. Surf. Sci. 109-110, 36-42 (1997).
[CrossRef]

1996 (2)

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef]

1994 (3)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257-259 (1994).

1992 (1)

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102-15115 (1992).
[CrossRef]

1991 (1)

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

1989 (5)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350(1989).
[CrossRef]

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1144 (1989).

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711-2713 (1989).
[CrossRef]

J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. E. Thompson, T. L. Weiland, and R. B. Wilcox, “Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components,” J. Opt. Soc. Am. B 6, 2402-2411 (1989).

D. Kitriotis and L. D. Merkle, “Multiple pulse laser-induced damage phenomena in silicates,” Appl. Opt. 28, 949-958(1989).

1988 (1)

L. D. Merkle and D. Kitriotis, “Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass,” Phys. Rev. B 38, 1473-1482 (1988).
[CrossRef]

1984 (2)

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and P. N. Rogovtsev, “Influence of the mode composition of laser radiation on the optical breakdown of silicate glasses,” Sov. J. Quantum Electron. 14, 226-229 (1984).
[CrossRef]

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

1981 (1)

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144-2151 (1981).
[CrossRef]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
[CrossRef]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
[CrossRef]

1973 (2)

1970 (1)

V. I. Talanov, “Focusing of light in cubic media,” JETP Lett. 11, 199-201 (1970).

1969 (2)

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57-72 (1969).
[CrossRef]

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862-868 (1969).
[CrossRef]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350(1989).
[CrossRef]

Akamatsu, S.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Akhouayri, H.

Amra, C.

Antonetti, A.

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Arnold, D.

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102-15115 (1992).
[CrossRef]

Ashkenasi, D.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

Audebert, P.

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Austin, R. R.

Backus, S.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
[CrossRef]

Bass, M.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

D. W. Fradin and M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157-159 (1973).
[CrossRef]

Bercegol, H.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163-10171 (2005).
[CrossRef]

Bertussi, B.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Billard, F.

Birolleau, J.-C.

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
[CrossRef]

Bouillet, S.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Boyd, R. W.

T. R. Moore, G. L. Fischer, and R. W. Boyd, “Measurement of the power distribution during stimulated Brillouin scattering with focused Gaussian beams,” J. Mod. Opt. 45, 735-745(1998).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Braunlich, P.

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711-2713 (1989).
[CrossRef]

Buckland, E. L.

Bude, J.

J. Bude, G. Guss, M. Mathews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Campbell, E. E. B.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

Campbell, J. H.

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Cartier, E.

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102-15115 (1992).
[CrossRef]

Chase, L. L.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. B 18, 2607-2616 (2001).
[CrossRef]

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350(1989).
[CrossRef]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Chen, Y.-L.

Y.-L. Chen, J. W. L. Lewis, and C. Parriger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91-103 (2000).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
[CrossRef]

Commandre, M.

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

J.-Y. Natoli, B. Bertussi, and M. Commandre, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30, 1315-1317 (2005).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Courchinoux, R.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Daguzan, P.

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Ultrafast processes in laser irradiated wide bandgap insulators,” Appl. Surf. Sci. 109-110, 36-42 (1997).
[CrossRef]

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Dawes, E. L.

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862-868 (1969).
[CrossRef]

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Diggonet, M. J. F.

Donval, T.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Dos Santos, A.

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Efimov, O. M.

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and P. N. Rogovtsev, “Influence of the mode composition of laser radiation on the optical breakdown of silicate glasses,” Sov. J. Quantum Electron. 14, 226-229 (1984).
[CrossRef]

Ehrlich, R. B.

Farroni, J.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

A. M. Rubenchik and M. D. Feit, “Initiation, growth and mitigation of UV laser induced damage in fused silica,” Proc. SPIE 4679, 79-95 (2002).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef]

Feng, D. H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Fischer, G. L.

T. R. Moore, G. L. Fischer, and R. W. Boyd, “Measurement of the power distribution during stimulated Brillouin scattering with focused Gaussian beams,” J. Mod. Opt. 45, 735-745(1998).

Fradin, D. W.

D. W. Fradin and M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157-159 (1973).
[CrossRef]

Frasca, V.

Fujita, H.

H. Yoshida, H. Fujita, and M. Nakatsuka, “Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage,” Opt. Eng. 36, 2557-2562 (1997).
[CrossRef]

Gallais, L.

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

J.-Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156-3166 (2002).
[CrossRef]

Garavaglia, A.

Garcia, H.

Gauthier, J. C.

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Gehr, R. J.

Geindre, J. P.

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Genin, F. Y.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. B 18, 2607-2616 (2001).
[CrossRef]

Gibson, S. N.

M. Li, S. Menon, J. P. Nibarger, and S. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394-2397 (1999).
[CrossRef]

Glebov, L. B.

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321-330 (2002).
[CrossRef]

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and P. N. Rogovtsev, “Influence of the mode composition of laser radiation on the optical breakdown of silicate glasses,” Sov. J. Quantum Electron. 14, 226-229 (1984).
[CrossRef]

Gong, Q. H.

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

Grezes-Besset, C.

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Guenther, A. H.

Guizard, S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

F. Quere, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138-144 (2001).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Ultrafast processes in laser irradiated wide bandgap insulators,” Appl. Surf. Sci. 109-110, 36-42 (1997).
[CrossRef]

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Guss, G.

J. Bude, G. Guss, M. Mathews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Hagan, D. J.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Hamoniaux, G.

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Herrmann, R.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Horibe, H.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Huang, M.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Jiang, S. B.

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

Jitsuno, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Johnson, A. M.

Jones, S. C.

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711-2713 (1989).
[CrossRef]

Josse, M.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Kamimura, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266 nm and longer wavelengths,” Appl. Opt. 38, 2510-2515 (1999).
[CrossRef]

Kamisugi, N.

Kapteyn, H.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
[CrossRef]

Kato, T.

T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
[CrossRef]

Kautek, W.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Kim, K. S.

Kino, G. S.

Kitriotis, D.

D. Kitriotis and L. D. Merkle, “Multiple pulse laser-induced damage phenomena in silicates,” Appl. Opt. 28, 949-958(1989).

L. D. Merkle and D. Kitriotis, “Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass,” Phys. Rev. B 38, 1473-1482 (1988).
[CrossRef]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Koumvakalis, N.

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

Koyama, H.

T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
[CrossRef]

Kozlowski, M.

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

Krastev, K.

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Krausz, F.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Krol, H.

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Kruger, J.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Kuzuu, N.

Kyrazis, D. T.

Lagier, G.

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Lamaignere, L.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163-10171 (2005).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Lewis, J. W. L.

Y.-L. Chen, J. W. L. Lewis, and C. Parriger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91-103 (2000).
[CrossRef]

Li, B. B.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Li, M.

M. Li, S. Menon, J. P. Nibarger, and S. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394-2397 (1999).
[CrossRef]

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Li, X. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Liu, A. C.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Liu, Y.

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

Mansour, N.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1144 (1989).

Mao, S. S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Mao, X.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
[CrossRef]

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862-868 (1969).
[CrossRef]

Martin, P.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

F. Quere, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138-144 (2001).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Ultrafast processes in laser irradiated wide bandgap insulators,” Appl. Surf. Sci. 109-110, 36-42 (1997).
[CrossRef]

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Martinelli, M.

Mathews, M.

J. Bude, G. Guss, M. Mathews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

McDonald, F. C.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

McIntosh, B.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Melloni, A.

Menon, S.

M. Li, S. Menon, J. P. Nibarger, and S. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394-2397 (1999).
[CrossRef]

Merkle, L. D.

D. Kitriotis and L. D. Merkle, “Multiple pulse laser-induced damage phenomena in silicates,” Appl. Opt. 28, 949-958(1989).

L. D. Merkle and D. Kitriotis, “Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass,” Phys. Rev. B 38, 1473-1482 (1988).
[CrossRef]

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Michaud, R.

Milam, D.

Milanovich, F.

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

Moore, T. R.

T. R. Moore, G. L. Fischer, and R. W. Boyd, “Measurement of the power distribution during stimulated Brillouin scattering with focused Gaussian beams,” J. Mod. Opt. 45, 735-745(1998).

Motokoshi, S.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Mourou, G.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Murnane, M.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
[CrossRef]

Murray, J. R.

Nakatsuka, M.

H. Yoshida, H. Fujita, and M. Nakatsuka, “Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage,” Opt. Eng. 36, 2557-2562 (1997).
[CrossRef]

Natoli, J.-Y.

Neauport, J.

New, G. H. C.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57-72 (1969).
[CrossRef]

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, and S. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394-2397 (1999).
[CrossRef]

Nishioka, T.

T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
[CrossRef]

Noack, F.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

Oguama, F. A.

Okamato, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Olivier, T.

Parriger, C.

Y.-L. Chen, J. W. L. Lewis, and C. Parriger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91-103 (2000).
[CrossRef]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350(1989).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef]

Petite, G.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Ultrafast processes in laser irradiated wide bandgap insulators,” Appl. Surf. Sci. 109-110, 36-42 (1997).
[CrossRef]

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

Petrovskii, G. T.

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and P. N. Rogovtsev, “Influence of the mode composition of laser radiation on the optical breakdown of silicate glasses,” Sov. J. Quantum Electron. 14, 226-229 (1984).
[CrossRef]

Pilon, F.

Pistor, T. V.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. B 18, 2607-2616 (2001).
[CrossRef]

Poncetta, J.-C.

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Putman, J.

Quere, F.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

F. Quere, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138-144 (2001).
[CrossRef]

Quoi, K. W.

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Rainer, F.

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Reed, W. A.

Ristau, D.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Rodriguez, G.

Rogovtsev, P. N.

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and P. N. Rogovtsev, “Influence of the mode composition of laser radiation on the optical breakdown of silicate glasses,” Sov. J. Quantum Electron. 14, 226-229 (1984).
[CrossRef]

Rosenfeld, A.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

Rubenchick, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

A. M. Rubenchik and M. D. Feit, “Initiation, growth and mitigation of UV laser induced damage in fused silica,” Proc. SPIE 4679, 79-95 (2002).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef]

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Russo, R. E.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

Sajer, J. M.

J. M. Sajer, “Stimulated Brillouin scattering and front surface damage,” Proc. SPIE 5273, 129-135 (2004).
[CrossRef]

Sakamoto, T.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Salleo, A.

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. B 18, 2607-2616 (2001).
[CrossRef]

Sartania, S.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Shen, X. A.

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711-2713 (1989).
[CrossRef]

Shiba, H.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Smirl, A. L.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144-2151 (1981).
[CrossRef]

Smith, A. V.

Smith, J. R.

Soileau, M. J.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1144 (1989).

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144-2151 (1981).
[CrossRef]

Spaeth, M. L.

J. Bude, G. Guss, M. Mathews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

Spielmann, C.

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Stolen, R. H.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef]

Sun, H. Y.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Sun, Q.

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

Talanov, V. I.

V. I. Talanov, “Focusing of light in cubic media,” JETP Lett. 11, 199-201 (1970).

Tankala, K.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Taylor, A. J.

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Thomas, I.

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

Thompson, C. E.

Tien, A. C.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
[CrossRef]

Tonini, A.

Torricini, D.

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Toruellas, W.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Van Stryland, E. W.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1144 (1989).

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144-2151 (1981).
[CrossRef]

Varel, H.

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

Villanger, A.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Wang, X. F.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Ward, J. F.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57-72 (1969).
[CrossRef]

Webster, S.

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

Weiland, T. L.

Wilcox, R. B.

Williams, W. E.

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1144 (1989).

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144-2151 (1981).
[CrossRef]

Wolfe, C. R.

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

Wood, R. M.

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2003).

Xu, S. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Yang, H.

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

Yasue, T.

T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
[CrossRef]

Yoshida, H.

N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266 nm and longer wavelengths,” Appl. Opt. 38, 2510-2515 (1999).
[CrossRef]

H. Yoshida, H. Fujita, and M. Nakatsuka, “Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage,” Opt. Eng. 36, 2557-2562 (1997).
[CrossRef]

Yoshida, K.

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266 nm and longer wavelengths,” Appl. Opt. 38, 2510-2515 (1999).
[CrossRef]

Yoshida, Y.

T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
[CrossRef]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

Zhou, Y. H.

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. A (2)

S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695-1709 (2004).
[CrossRef]

H. Varel, D. Ashkenasi, A. Rosenfeld, R. Herrmann, F. Noack, and E. E. B. Campbell, “Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses,” Appl. Phys. A 62, 293-294 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

D. W. Fradin and M. Bass, “Comparison of laser-induced surface and bulk damage,” Appl. Phys. Lett. 22, 157-159 (1973).
[CrossRef]

Appl. Surf. Sci. (1)

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Ultrafast processes in laser irradiated wide bandgap insulators,” Appl. Surf. Sci. 109-110, 36-42 (1997).
[CrossRef]

Chin. Phys. Lett. (1)

Q. Sun, S. B. Jiang, Y. Liu, Y. H. Zhou, H. Yang, and Q. H. Gong, “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).
[CrossRef]

Europhys. Lett. (1)

F. Quere, S. Guizard, and P. Martin, “Time-resolved study of laser-induced breakdown in dielectrics,” Europhys. Lett. 56, 138-144 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375-386 (1974).
[CrossRef]

J. Appl. Phys. (1)

L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 μm,” J. Appl. Phys. 55, 772-775 (1984).
[CrossRef]

J. Mod. Opt. (1)

T. R. Moore, G. L. Fischer, and R. W. Boyd, “Measurement of the power distribution during stimulated Brillouin scattering with focused Gaussian beams,” J. Mod. Opt. 45, 735-745(1998).

J. Opt. Soc. Am. B (5)

J. Quant. Spectrosc. Radiat. Transfer (1)

Y.-L. Chen, J. W. L. Lewis, and C. Parriger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 67, 91-103 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Yasue, Y. Yoshida, H. Koyama, T. Kato, and T. Nishioka, “Dielectric breakdown of silicon dioxide studied by scanning probe microscopy,” J. Vac. Sci. Technol. B 15, 1884-1888(1997).
[CrossRef]

JETP Lett. (1)

V. I. Talanov, “Focusing of light in cubic media,” JETP Lett. 11, 199-201 (1970).

Jpn. J. Appl. Phys. (1)

T. Kamimura, S. Akamatsu, H. Horibe, H. Shiba, S. Motokoshi, T. Sakamoto, T. Jitsuno, T. Okamato, and K. Yoshida, “Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength,” Jpn. J. Appl. Phys. 43, L1229-L1231 (2004).
[CrossRef]

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175-190 (1997).
[CrossRef]

Opt. Eng. (3)

M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133-1144 (1989).

H. Yoshida, H. Fujita, and M. Nakatsuka, “Stimulated Brillouin scattering phase-conjugated wave reflection from fused-silica glass without laser-induced damage,” Opt. Eng. 36, 2557-2562 (1997).
[CrossRef]

H. Krol, L. Gallais, M. Commandre, C. Grezes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064 nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. (2)

E. L. Dawes and J. H. Marburger, “Computer studies in self-focusing,” Phys. Rev. 179, 862-868 (1969).
[CrossRef]

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57-72 (1969).
[CrossRef]

Phys. Rev. B (7)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337-3350(1989).
[CrossRef]

D. Arnold and E. Cartier, “Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids,” Phys. Rev. B 46, 15102-15115 (1992).
[CrossRef]

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. Williams, “Pulse-width and focal-volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144-2151 (1981).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, B. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73, 054105 (2006).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchick, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

L. D. Merkle and D. Kitriotis, “Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass,” Phys. Rev. B 38, 1473-1482 (1988).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Phys. Rev. Lett. (8)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

P. Audebert, P. Daguzan, A. Dos Santos, J. C. Gauthier, J. P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, and A. Antonetti, “Space-time observation of an electron gas in SiO2,” Phys. Rev. Lett. 73, 1990-1993 (1994).
[CrossRef]

M. Li, S. Menon, J. P. Nibarger, and S. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394-2397 (1999).
[CrossRef]

X. A. Shen, S. C. Jones, and P. Braunlich, “Laser heating of free electrons in wide-gap optical materials at 1064 nm,” Phys. Rev. Lett. 62, 2711-2713 (1989).
[CrossRef]

M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076-4079 (1998).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883-3886(1999).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2251 (1995).
[CrossRef]

Proc. SPIE (6)

J. H. Campbell, F. Rainer, M. Kozlowski, C. R. Wolfe, I. Thomas, and F. Milanovich, “Damage resistant optics for a mega-joule solid-state laser,” Proc. SPIE 1441, 444-456(1991).
[CrossRef]

J. M. Sajer, “Stimulated Brillouin scattering and front surface damage,” Proc. SPIE 5273, 129-135 (2004).
[CrossRef]

S. Webster, F. C. McDonald, A. Villanger, M. J. Soileau, E. W. Van Stryland, D. J. Hagan, B. McIntosh, W. Toruellas, J. Farroni, and K. Tankala, “Optical damage measurements for high peak power ytterbium doped fiber amplifiers,” Proc. SPIE 5991, 599115 (2005).
[CrossRef]

L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE 4679, 321-330 (2002).
[CrossRef]

J. Bude, G. Guss, M. Mathews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,” Proc. SPIE 6720, 672009 (2007).
[CrossRef]

A. M. Rubenchik and M. D. Feit, “Initiation, growth and mitigation of UV laser induced damage in fused silica,” Proc. SPIE 4679, 79-95 (2002).
[CrossRef]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4, 35-110 (1975).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Lamaignere, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78, 103105 (2007).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. B. Glebov, O. M. Efimov, G. T. Petrovskii, and P. N. Rogovtsev, “Influence of the mode composition of laser radiation on the optical breakdown of silicate glasses,” Sov. J. Quantum Electron. 14, 226-229 (1984).
[CrossRef]

Other (4)

R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics, 2003).

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

A. E. Siegman, Lasers (University Science Books, 1986).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Summary of reported damage threshold fluences for silica with picosecond and nanosecond pulses. The vertical bar indicates a threshold range for an electron avalanche, deduced from the DC electric field breakdown threshold reported by Yasue et al. [17]. The lines, bottom to top at 1 ns , are reported thresholds from studies of pulse duration scaling by Campbell et al. [34], Stuart et al. [33], Du et al. [32], and Tien et al. [31]. The triangles (surface damage) and diamonds (bulk damage), lowest to highest fluence, are from Kuzuu et al. [22], Krol et al. [61], Natoli et al. [62], Kamimura et al. [63], Natoli et al. [64], Webster et al. [8], and Kitriotis and Merkel [14, 65].

Fig. 2
Fig. 2

Diagram of the apparatus used to measure the damage threshold fluence of dielectric samples. The 1064 nm Nd:YAG laser operates on a single longitudinal mode to generate 8 12 ns long pulses with smooth temporal profiles. The beam is attenuated to a few millijoules in the variable attenuator and then spatially filtered by focusing through a diamond wire die followed by a circular aperture to clip all except the lowest-order Airy lobe. The filtered beam’s temporal profile is monitored using a fast photo tube. Singlet lenses focus the light to 8 16 μm spots inside the sample, and a photo multiplier detects white light emitted by the sample at fluences above the damage limit. A fast photo tube records the transmitted pulse, and a pilot He–Ne beam probes the focus for damage.

Fig. 3
Fig. 3

Typical temporal and spatial profiles for the Q-switched laser before focusing into the samples.

Fig. 4
Fig. 4

Derivative of transmitted pulse energy with respect to knife edge position versus knife edge position when the knife edge is translated through the focal waist in two orthogonal directions. The solid curves are best-fit Gaussian profiles corresponding to waist sizes of 7.9 ± 0.1 μm in the y direction and 8.0 ± 0.1 μm in the x direction.

Fig. 5
Fig. 5

Third harmonic signal versus position of the entrance face of a fused silica window as it is scanned through the focus. The solid curve is a best fit to the measured values and corresponds to a Rayleigh range of z R = 198 ± 4 μm , which implies w = 8.2 ± 0.1 μm .

Fig. 6
Fig. 6

On-axis irradiance versus position for a beam that is focused two Rayleigh ranges inside a window. With increasing power the position of maximum irradiance moves downstream and the enhancement of the irradiance increases.

Fig. 7
Fig. 7

Irradiance enhancement factor due to self-focusing. The dashed curve corresponds to 1 / ( 1 P / P SF ) . The other curves correspond to varying enhancement factors derived from numerical modeling for focusing depths of zero, one, two, three, four, and five times the Rayleigh range z R .

Fig. 8
Fig. 8

Position of the maximum irradiance point for varying power with different nominal focusing depths z . The shift in position from P / P SF 1 to P / P SF 1 is approximately 1 / z , except when z = 0 .

Fig. 9
Fig. 9

Transmitted power near the damage threshold of fused silica for an 8.1 μm focal waist. The 3.20 mJ trace corresponds to subthreshold power. The higher energy traces show that damage is sudden and occurs at a nearly constant power. There is a small increase in power at breakdown with increasing pulse energy, indicating a nonzero damage induction time. The detector/scope bandwidth is 4 GHz .

Fig. 10
Fig. 10

Probability of bulk optical damage in silica after 3000 pulses at a single focal location versus peak irradiance. The transition near 4.8 kW / μm 2 is for seeded single longitudinal mode pulses. The lower transition is for unseeded multimode pulses.

Fig. 11
Fig. 11

Measured and computed damage threshold powers illustrating weak self-focusing. The symbols are measured damage threshold powers in units of P SF versus the position of focus relative to the entrance surface in units of the Rayleigh range, and the solid curve is computed using our numerical model of self-focusing. The measured Rayleigh range is z R = 254 μm in silica, and we assume P SF = 4.26 MW .

Fig. 12
Fig. 12

Measured and computed damage threshold powers illustrating moderate self-focusing. The symbols are measured damage threshold powers in units of the self-focusing power and the Rayleigh range, and the curve is computed using our numerical model of self-focusing. The measured Rayleigh range is z R = 1035 μm in silica, and we assume P SF = 4.26 MW .

Fig. 13
Fig. 13

Same data as Fig. 1 with our two measured values added as filled circles.

Fig. 14
Fig. 14

Time profile of white light emitted after optical breakdown of silica by an 8 ns pulse.

Fig. 15
Fig. 15

End view of bulk optical damage of fused silica at three locations by 8 ns single longitudinal mode pulses. The images are produced by a phase contrast microscope. The pattern indicates multiple radial fracture planes.

Fig. 16
Fig. 16

Side view of bulk optical damage of fused silica at three locations for 8 μm focal waist and 8 ns single longitudinal mode pulses with energy slightly above the breakdown threshold. The curves qualitatively indicate the shape of the beam as it passes through the focus, and the size of the dot indicates the uncertainty in the location of the focus. Breakdown occurs first at the focus where a large bloom of radial fractures is centered and propagates upstream. An apparent tube begins at the focus and extends approximately one Rayleigh range upstream to the point where damage stalls and a smaller bloom is formed.

Fig. 17
Fig. 17

Side view of bulk optical damage of fused silica for a 17 μm focal waist and an 8 ns single longitudinal mode pulse with energy 25% above the breakdown threshold. Breakdown is initiated at the focus and propagates upstream approximately one Rayleigh range.

Fig. 18
Fig. 18

Single shot damage threshold irradiance for 8 ns pulses on silica polished using ceria, alumina, and alumina followed by silica.

Fig. 19
Fig. 19

Annealed damage irradiance for 8 ns pulses on silica polished using ceria and alumina.

Fig. 20
Fig. 20

Symbols are measured damage threshold powers in units of the surface damage threshold power at the beam waist, plotted against the distance of the focus from the input face of the window, measured in units of the Rayleigh range ( w = 7.68 μm and z R = 174 μm ). The solid curve is computed from the focusing equation in air. No dependence of damage threshold on beam size is seen.

Fig. 21
Fig. 21

Probability of air breakdown versus fluence at a w = 7.5 μm focus for seeded and unseeded 8 ns pulses. Each point represents the probability of breakdown based on 30 pulses.

Fig. 22
Fig. 22

Same data as Fig. 9 with rate equation predictions indicated by diamonds.

Fig. 23
Fig. 23

Our measured (symbols) and modeled values (solid curve), Mero et al. [57] values for 800 nm light (dashed curve), and the value deduced from the DC breakdown voltage (vertical bar).

Tables (1)

Tables Icon

Table 1 Self-Focusing Power

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

n e = ω 2 m e * ϵ / e 2 10 9   electrons / μm 3 ,
S = S [ z R 2 + ( z z ) 2 ] 2
z R = w 2 k 2 .
Δ k = k 3 ω 3 k ω = 0.469 / μm ,
I I = 1 1 P / P SF ,
P SF = 0.149 λ 2 n 2 n ,
g B I SBS L eff = 21 ,
L eff = z R = w 2 k / 2 ,
I SBS = 2 P SBS / π w 2 ,
P SBS = 21 λ / 2 g B .
P SBS 0.22 MW .
I SBS = 21 g B L ,
E 1064 nm = E D C 2 ( 1 + ω 2 τ c 2 ) ,
Δ ( 1 n 2 ) i j = ρ i j k l e k l ,
e k l = 1 2 ( u k x l + u l x k ) ,
e i j = s i j k l σ k l ,
Δ n x = n x 3 2 ( ρ x x e x x + ρ x y e y y + ρ x z e z z ) ,
Δ n y = n y 3 2 ( ρ y y e y y + ρ y x e x x + ρ y z e z z ) ,
Δ n x Δ n y = n 3 2 E σ x x ( ρ x y ρ x x ) ( 1 + ν ) ,
Δ n x Δ n y = 1.45 3 2 × 7.3 × 10 10 ( 0.149 ) ( 1.164 ) σ x x ,
Δ n x Δ n y = 3.6 × 10 12 σ x x .
U plasma = ( 10 9 e / μ m 3 ) ( 2 × 10 4 μ m 3 ) ( 10 eV / e ) ( 1.6 × 10 19 J / eV ) = 30 μ J μ J .
d n d t = β I k + α n I n τ r .

Metrics