Abstract

Cloud studies were carried out with a polarimetric bistatic lidar setup at the Arctic Lidar Observatory for Middle Atmosphere Research in Andenes (69°N, 16°E), Norway. Measurements were performed at altitudes between 1.5 and 10.5km, corresponding to scattering angles between 130° and 170°. The geometry, not restricted to the parallel or perpendicular laser polarization directions, gave a well-defined scattering angle, which together with polarization characterization, was used to investigate the scattering particles. The principles of the technique and the first results are presented together with an evaluation of the capabilities.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742-1753 (1990).
    [CrossRef]
  2. D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972-1986 (1994).
    [CrossRef]
  3. C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220-1224 (1978).
    [CrossRef]
  4. V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
    [CrossRef]
  5. B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Oceanic Opt. 16, 325-332 (2003).
  6. R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011-1017 (1971).
    [CrossRef]
  7. E. O. Hulburt, “Observations of a searchlight beam to an altitude of 28 kilometers,” J. Opt. Soc. Am. 27, 377-382(1937).
    [CrossRef]
  8. L. Elterman, “The measurement of stratospheric density distribution with the searchlight technique,” J. Geophys. Res. 56, 509-520 (1951).
    [CrossRef]
  9. L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519-530 (1953).
    [CrossRef]
  10. J. A. Reagan, “Comments on bistatic lidar,” in Atmospheric Exploration by Remote Probes Vol. 2, Proc. of the Scientific Meetings of the Panel on Remote Atmospheric Probing (National Academy of Sciences, 1969), pp. 213-215.
  11. J. A. Reagan and B. M. Herman, “Bistatic lidar investigations of atmospheric aerosols,” in Reprints 14th Radar Meteorology Conf. (American Meteorology Society, 1970), pp. 275-280.
  12. J. A. Reagan, B. M. Herman, and R. J. Spiegel, “On the use of bistatic lidar in the study of atmospheric aerosols,” in 1970 SWIEEECO Record of Technical Papers (IEEE, 1970), pp. 526-530.
  13. B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
    [CrossRef]
  14. J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
    [CrossRef]
  15. J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
    [CrossRef]
  16. J. A. Reagan, D. M. Byrne, and B. M. Herman, “Bistatic LIDAR: a tool for characterizing atmospheric particulates: part I--the remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229-235 (1982).
    [CrossRef]
  17. G. Ward, K. M. Cushing, R. D. McPeters, and A. E. S. Green, “Atmospheric aerosol index of refraction and size-altitude distribution from bistatic laser scattering and solar aureole measurements,” Appl. Opt. 12, 2585-2592 (1973).
    [CrossRef] [PubMed]
  18. R. J. Perry, A. J. Hunt, and D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700-2710 (1978).
    [CrossRef] [PubMed]
  19. K. Parameswaran, K. O. Rose, and B. V. K. Murthy, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89, 2541-2552 (1984).
    [CrossRef]
  20. N. Sugimoto, “Two-color dual-polarzation pulsed bistatic lidar for measuring water cloud droplet size,” Opt. Rev. 7, 235-240(2000).
    [CrossRef]
  21. N. Sugimoto, I. Matsui, and A. Shimizu, “Measurement of water cloud particle size with dual-polarization pulsed bistatic lidar,” Opt. Rev. 8, 476-479 (2001).
    [CrossRef]
  22. T. D. Stevens and C. R. Philbrick, “Optical extinction from raman lidar and a bi-static remote receiver,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (CO-MEAS, 1995), pp. 170-173.
    [CrossRef]
  23. E. J. Novitsky and C. R. Philbrick, “Multistatic lidar profiling of urban atmospheric aerosols,” J. Geophys. Res. 110, D07S11(2005).
    [CrossRef]
  24. A. J. Heymsfield, K. M. Miller, and J. D. Spinhirne, “The 27-28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313-2328 (1990).
    [CrossRef]
  25. K. N. Liou and Y. Takano, “Interpretation of cirrus cloud polarization measurements from radiative transfer theory,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014613 (2002).
    [CrossRef]
  26. Y. Takano and K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254-3263 (1985).
    [CrossRef] [PubMed]
  27. M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt. 32, 4652-4666 (1993).
    [CrossRef] [PubMed]
  28. M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206-7225 (1994).
    [CrossRef] [PubMed]
  29. M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309-312 (1998).
    [CrossRef]
  30. T. Wriedt and A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 199-213(1998).
    [CrossRef]
  31. T. Wriedt, “Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256-268 (2002).
    [CrossRef]
  32. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    [CrossRef]
  33. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996).
    [CrossRef] [PubMed]
  34. G. Witt, K. F. G. Olofson, A. Cohen, J. B. C. Pettersson, and M. Frioud, “Bi-static lidar sounding of layered clouds in the Arctic troposphere and stratosphere,” submitted to SPIE.
  35. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2005).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  37. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  38. L. Oolman, “University of Wyoming, atmospheric soundings,” http://weather.uwyo.edu/upperair/sounding.html?region=np.

2005 (1)

E. J. Novitsky and C. R. Philbrick, “Multistatic lidar profiling of urban atmospheric aerosols,” J. Geophys. Res. 110, D07S11(2005).
[CrossRef]

2003 (1)

B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Oceanic Opt. 16, 325-332 (2003).

2002 (3)

T. Wriedt, “Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256-268 (2002).
[CrossRef]

K. N. Liou and Y. Takano, “Interpretation of cirrus cloud polarization measurements from radiative transfer theory,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014613 (2002).
[CrossRef]

V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
[CrossRef]

2001 (1)

N. Sugimoto, I. Matsui, and A. Shimizu, “Measurement of water cloud particle size with dual-polarization pulsed bistatic lidar,” Opt. Rev. 8, 476-479 (2001).
[CrossRef]

2000 (1)

N. Sugimoto, “Two-color dual-polarzation pulsed bistatic lidar for measuring water cloud droplet size,” Opt. Rev. 7, 235-240(2000).
[CrossRef]

1998 (2)

M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

T. Wriedt and A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 199-213(1998).
[CrossRef]

1996 (2)

1994 (2)

M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206-7225 (1994).
[CrossRef] [PubMed]

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972-1986 (1994).
[CrossRef]

1993 (1)

1990 (2)

G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742-1753 (1990).
[CrossRef]

A. J. Heymsfield, K. M. Miller, and J. D. Spinhirne, “The 27-28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313-2328 (1990).
[CrossRef]

1985 (1)

1984 (1)

K. Parameswaran, K. O. Rose, and B. V. K. Murthy, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89, 2541-2552 (1984).
[CrossRef]

1982 (1)

J. A. Reagan, D. M. Byrne, and B. M. Herman, “Bistatic LIDAR: a tool for characterizing atmospheric particulates: part I--the remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229-235 (1982).
[CrossRef]

1980 (1)

J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
[CrossRef]

1978 (2)

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220-1224 (1978).
[CrossRef]

R. J. Perry, A. J. Hunt, and D. R. Huffman, “Experimental determinations of Mueller scattering matrices for nonspherical particles,” Appl. Opt. 17, 2700-2710 (1978).
[CrossRef] [PubMed]

1977 (1)

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

1973 (1)

1971 (2)

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

1953 (1)

L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519-530 (1953).
[CrossRef]

1951 (1)

L. Elterman, “The measurement of stratospheric density distribution with the searchlight technique,” J. Geophys. Res. 56, 509-520 (1951).
[CrossRef]

1937 (1)

Abshire, N. L.

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220-1224 (1978).
[CrossRef]

Bissonette, L.

V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Browning, S. R.

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

Byrne, D. M.

J. A. Reagan, D. M. Byrne, and B. M. Herman, “Bistatic LIDAR: a tool for characterizing atmospheric particulates: part I--the remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229-235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
[CrossRef]

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

Chepfer, H.

V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
[CrossRef]

Cohen, A.

G. Witt, K. F. G. Olofson, A. Cohen, J. B. C. Pettersson, and M. Frioud, “Bi-static lidar sounding of layered clouds in the Arctic troposphere and stratosphere,” submitted to SPIE.

Cushing, K. M.

de Pena, R. G.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

Doicu, A.

T. Wriedt and A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 199-213(1998).
[CrossRef]

Elterman, L.

L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519-530 (1953).
[CrossRef]

L. Elterman, “The measurement of stratospheric density distribution with the searchlight technique,” J. Geophys. Res. 56, 509-520 (1951).
[CrossRef]

Flamant, P.

V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
[CrossRef]

Flatau, P. J.

G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742-1753 (1990).
[CrossRef]

Frioud, M.

G. Witt, K. F. G. Olofson, A. Cohen, J. B. C. Pettersson, and M. Frioud, “Bi-static lidar sounding of layered clouds in the Arctic troposphere and stratosphere,” submitted to SPIE.

Green, A. E. S.

Herman, B. M.

J. A. Reagan, D. M. Byrne, and B. M. Herman, “Bistatic LIDAR: a tool for characterizing atmospheric particulates: part I--the remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229-235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
[CrossRef]

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

J. A. Reagan and B. M. Herman, “Bistatic lidar investigations of atmospheric aerosols,” in Reprints 14th Radar Meteorology Conf. (American Meteorology Society, 1970), pp. 275-280.

J. A. Reagan, B. M. Herman, and R. J. Spiegel, “On the use of bistatic lidar in the study of atmospheric aerosols,” in 1970 SWIEEECO Record of Technical Papers (IEEE, 1970), pp. 526-530.

Heymsfield, A. J.

A. J. Heymsfield, K. M. Miller, and J. D. Spinhirne, “The 27-28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313-2328 (1990).
[CrossRef]

Huffman, D. R.

Hulburt, E. O.

Hunt, A. J.

Jayaweera, K.

Kaul, B. V.

B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Oceanic Opt. 16, 325-332 (2003).

King, M. D.

J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2005).

Liou, K. N.

K. N. Liou and Y. Takano, “Interpretation of cirrus cloud polarization measurements from radiative transfer theory,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014613 (2002).
[CrossRef]

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996).
[CrossRef] [PubMed]

Mackowski, D. W.

Mamane, Y.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

Matsui, I.

N. Sugimoto, I. Matsui, and A. Shimizu, “Measurement of water cloud particle size with dual-polarization pulsed bistatic lidar,” Opt. Rev. 8, 476-479 (2001).
[CrossRef]

McNice, G. T.

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220-1224 (1978).
[CrossRef]

McPeters, R. D.

Menzel, W. P.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972-1986 (1994).
[CrossRef]

Miller, K. M.

A. J. Heymsfield, K. M. Miller, and J. D. Spinhirne, “The 27-28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313-2328 (1990).
[CrossRef]

Mishchenko, M. I.

Murthy, B. V. K.

K. Parameswaran, K. O. Rose, and B. V. K. Murthy, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89, 2541-2552 (1984).
[CrossRef]

Noel, V.

V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
[CrossRef]

Novitsky, E. J.

E. J. Novitsky and C. R. Philbrick, “Multistatic lidar profiling of urban atmospheric aerosols,” J. Geophys. Res. 110, D07S11(2005).
[CrossRef]

Olofson, K. F. G.

G. Witt, K. F. G. Olofson, A. Cohen, J. B. C. Pettersson, and M. Frioud, “Bi-static lidar sounding of layered clouds in the Arctic troposphere and stratosphere,” submitted to SPIE.

Oolman, L.

L. Oolman, “University of Wyoming, atmospheric soundings,” http://weather.uwyo.edu/upperair/sounding.html?region=np.

Parameswaran, K.

K. Parameswaran, K. O. Rose, and B. V. K. Murthy, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89, 2541-2552 (1984).
[CrossRef]

Perry, R. J.

Pettersson, J. B. C.

G. Witt, K. F. G. Olofson, A. Cohen, J. B. C. Pettersson, and M. Frioud, “Bi-static lidar sounding of layered clouds in the Arctic troposphere and stratosphere,” submitted to SPIE.

Philbrick, C. R.

E. J. Novitsky and C. R. Philbrick, “Multistatic lidar profiling of urban atmospheric aerosols,” J. Geophys. Res. 110, D07S11(2005).
[CrossRef]

T. D. Stevens and C. R. Philbrick, “Optical extinction from raman lidar and a bi-static remote receiver,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (CO-MEAS, 1995), pp. 170-173.
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220-1224 (1978).
[CrossRef]

Reagan, J. A.

J. A. Reagan, D. M. Byrne, and B. M. Herman, “Bistatic LIDAR: a tool for characterizing atmospheric particulates: part I--the remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229-235 (1982).
[CrossRef]

J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
[CrossRef]

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

J. A. Reagan and B. M. Herman, “Bistatic lidar investigations of atmospheric aerosols,” in Reprints 14th Radar Meteorology Conf. (American Meteorology Society, 1970), pp. 275-280.

J. A. Reagan, B. M. Herman, and R. J. Spiegel, “On the use of bistatic lidar in the study of atmospheric aerosols,” in 1970 SWIEEECO Record of Technical Papers (IEEE, 1970), pp. 526-530.

J. A. Reagan, “Comments on bistatic lidar,” in Atmospheric Exploration by Remote Probes Vol. 2, Proc. of the Scientific Meetings of the Panel on Remote Atmospheric Probing (National Academy of Sciences, 1969), pp. 213-215.

Rose, K. O.

K. Parameswaran, K. O. Rose, and B. V. K. Murthy, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89, 2541-2552 (1984).
[CrossRef]

Roy, G.

V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
[CrossRef]

Samokhvalov, I. V.

B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Oceanic Opt. 16, 325-332 (2003).

Sassen, K.

M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

Schotland, R. M.

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

Shimizu, A.

N. Sugimoto, I. Matsui, and A. Shimizu, “Measurement of water cloud particle size with dual-polarization pulsed bistatic lidar,” Opt. Rev. 8, 476-479 (2001).
[CrossRef]

Spiegel, R. J.

J. A. Reagan, B. M. Herman, and R. J. Spiegel, “On the use of bistatic lidar in the study of atmospheric aerosols,” in 1970 SWIEEECO Record of Technical Papers (IEEE, 1970), pp. 526-530.

Spinhirne, J. D.

A. J. Heymsfield, K. M. Miller, and J. D. Spinhirne, “The 27-28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313-2328 (1990).
[CrossRef]

J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
[CrossRef]

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

Stackhouse, P. W.

G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742-1753 (1990).
[CrossRef]

Stephens, G. L.

G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742-1753 (1990).
[CrossRef]

Stevens, T. D.

T. D. Stevens and C. R. Philbrick, “Optical extinction from raman lidar and a bi-static remote receiver,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (CO-MEAS, 1995), pp. 170-173.
[CrossRef]

Stone, R.

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

Strabala, K. I.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972-1986 (1994).
[CrossRef]

Sugimoto, N.

N. Sugimoto, I. Matsui, and A. Shimizu, “Measurement of water cloud particle size with dual-polarization pulsed bistatic lidar,” Opt. Rev. 8, 476-479 (2001).
[CrossRef]

N. Sugimoto, “Two-color dual-polarzation pulsed bistatic lidar for measuring water cloud droplet size,” Opt. Rev. 7, 235-240(2000).
[CrossRef]

Takano, Y.

K. N. Liou and Y. Takano, “Interpretation of cirrus cloud polarization measurements from radiative transfer theory,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014613 (2002).
[CrossRef]

Y. Takano and K. Jayaweera, “Scattering phase matrix for hexagonal ice crystals computed from ray optics,” Appl. Opt. 24, 3254-3263 (1985).
[CrossRef] [PubMed]

Thomson, D. W.

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

Travis, L. D.

M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation,” Appl. Opt. 33, 7206-7225 (1994).
[CrossRef] [PubMed]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2005).

Tsay, S.-C.

G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742-1753 (1990).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

Volkov, S. N.

B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Oceanic Opt. 16, 325-332 (2003).

Ward, G.

Witt, G.

G. Witt, K. F. G. Olofson, A. Cohen, J. B. C. Pettersson, and M. Frioud, “Bi-static lidar sounding of layered clouds in the Arctic troposphere and stratosphere,” submitted to SPIE.

Woolf, H. M.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972-1986 (1994).
[CrossRef]

Wriedt, T.

T. Wriedt, “Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256-268 (2002).
[CrossRef]

T. Wriedt and A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 199-213(1998).
[CrossRef]

Wylie, D. P.

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972-1986 (1994).
[CrossRef]

Yang, P.

Appl. Opt. (6)

Atmos. Oceanic Opt. (1)

B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Oceanic Opt. 16, 325-332 (2003).

Geophys. Res. Lett. (3)

M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: an application to contrails,” Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

K. N. Liou and Y. Takano, “Interpretation of cirrus cloud polarization measurements from radiative transfer theory,” Geophys. Res. Lett. 29, doi:10.1029/2001GL014613 (2002).
[CrossRef]

V. Noel, G. Roy, L. Bissonette, H. Chepfer, and P. Flamant, “Analysis of lidar measurements of ice clouds at multiple incidence angles,” Geophys. Res. Lett. 29, doi:10.1029/2002GL014828 (2002).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

J. A. Reagan, D. M. Byrne, and B. M. Herman, “Bistatic LIDAR: a tool for characterizing atmospheric particulates: part I--the remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229-235 (1982).
[CrossRef]

J. Appl. Meteorol. (3)

C. M. R. Platt, N. L. Abshire, and G. T. McNice, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220-1224 (1978).
[CrossRef]

J. A. Reagan, J. D. Spinhirne, D. M. Byrne, D. W. Thomson, R. G. de Pena, and Y. Mamane, “Atmospheric particulate properties inferred from lidar and solar radiometer observations compared with simultaneous in situ aircraft measurements: a case study,” J. Appl. Meteorol. 16, 911-928 (1977).
[CrossRef]

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011-1017 (1971).
[CrossRef]

J. Atmos. Sci. (2)

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

G. L. Stephens, S.-C. Tsay, P. W. Stackhouse, Jr., and P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback,” J. Atmos. Sci. 47, 1742-1753 (1990).
[CrossRef]

J. Clim. (1)

D. P. Wylie, W. P. Menzel, H. M. Woolf, and K. I. Strabala, “Four years of global cirrus cloud statistics using HIRS,” J. Clim. 7, 1972-1986 (1994).
[CrossRef]

J. Geophys. Res. (5)

J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, and B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591-1599 (1980).
[CrossRef]

E. J. Novitsky and C. R. Philbrick, “Multistatic lidar profiling of urban atmospheric aerosols,” J. Geophys. Res. 110, D07S11(2005).
[CrossRef]

K. Parameswaran, K. O. Rose, and B. V. K. Murthy, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89, 2541-2552 (1984).
[CrossRef]

L. Elterman, “The measurement of stratospheric density distribution with the searchlight technique,” J. Geophys. Res. 56, 509-520 (1951).
[CrossRef]

L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519-530 (1953).
[CrossRef]

J. Mod. Opt. (1)

T. Wriedt and A. Doicu, “Formulations of the extended boundary condition method for three-dimensional scattering using the method of discrete sources,” J. Mod. Opt. 45, 199-213(1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mon. Weather Rev. (1)

A. J. Heymsfield, K. M. Miller, and J. D. Spinhirne, “The 27-28 October 1986 FIRE IFO cirrus case study: cloud microstructure,” Mon. Weather Rev. 118, 2313-2328 (1990).
[CrossRef]

Opt. Rev. (2)

N. Sugimoto, “Two-color dual-polarzation pulsed bistatic lidar for measuring water cloud droplet size,” Opt. Rev. 7, 235-240(2000).
[CrossRef]

N. Sugimoto, I. Matsui, and A. Shimizu, “Measurement of water cloud particle size with dual-polarization pulsed bistatic lidar,” Opt. Rev. 8, 476-479 (2001).
[CrossRef]

Part. Part. Syst. Charact. (1)

T. Wriedt, “Using the T-matrix method for light scattering computations by non-axisymmetric particles: superellipsoids and realistically shaped particles,” Part. Part. Syst. Charact. 19, 256-268 (2002).
[CrossRef]

Other (9)

G. Witt, K. F. G. Olofson, A. Cohen, J. B. C. Pettersson, and M. Frioud, “Bi-static lidar sounding of layered clouds in the Arctic troposphere and stratosphere,” submitted to SPIE.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, 2005).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

L. Oolman, “University of Wyoming, atmospheric soundings,” http://weather.uwyo.edu/upperair/sounding.html?region=np.

T. D. Stevens and C. R. Philbrick, “Optical extinction from raman lidar and a bi-static remote receiver,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (CO-MEAS, 1995), pp. 170-173.
[CrossRef]

J. A. Reagan, “Comments on bistatic lidar,” in Atmospheric Exploration by Remote Probes Vol. 2, Proc. of the Scientific Meetings of the Panel on Remote Atmospheric Probing (National Academy of Sciences, 1969), pp. 213-215.

J. A. Reagan and B. M. Herman, “Bistatic lidar investigations of atmospheric aerosols,” in Reprints 14th Radar Meteorology Conf. (American Meteorology Society, 1970), pp. 275-280.

J. A. Reagan, B. M. Herman, and R. J. Spiegel, “On the use of bistatic lidar in the study of atmospheric aerosols,” in 1970 SWIEEECO Record of Technical Papers (IEEE, 1970), pp. 526-530.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic view of the CABLE measurement geometry. The remote receiver was located 2.1 km north-northeast from the lidar station. The laser was polarized in the east–west direction, giving an azimuthal angle between the plane of polarization and scattering plane of 23.8 ° . The trigger signal was taken from an altitude of roughly 600 m above sea level.

Fig. 2
Fig. 2

Rayleigh polarization as function of scattering altitude. The solid curves represent isotropic Rayleigh and the dashed curves represent molecular Rayleigh for P Q ( + ) and P L ( o ) , respectively.

Fig. 3
Fig. 3

Polarization as a function of scattering altitude for three different Gaussian size distributions of ice spheres (the first number in the legends refers to the width and the second number refers to the peak radius, both in nanometers). The dashed curves represent the polarization of molecular Rayleigh scattering. The upper panel shows P Q , and the lower panel shows P L . The polarizations were computed with a Mie program.

Fig. 4
Fig. 4

Color panel showing the modulated signal from a cloud-free overlap region between 6.1 and 6.4 km . The background signal is recorded in the blue area before and after the overlap region. Signal strength is given in arbitrary units.

Fig. 5
Fig. 5

Comparison between the off-axis measurements from the remote site (upper panel) and the backscatter measurements from the lidar station (lower panel). The horizontal lines in the upper panel mark the overlap region. The tilted streaks are a result of thin clouds with elevated cloud fronts passing the overlap region.

Fig. 6
Fig. 6

Recording of multiply scattered light from an optically thick cloud layer at an altitude not coinciding with the primary scattering altitude (upper panel). The lower panel shows the backscattering measurements with the horizontal lines marking the overlap region.

Fig. 7
Fig. 7

Polarization of the light scattered from the overlap region shown in Fig. 5. The clouds are seen to introduce a significant reduction of P L down to values below 0.4. After the clouds have passed P L increases rapidly to values around 0.7, expected for molecular and aerosol scattering from the altitude in question.

Fig. 8
Fig. 8

Summary of the P L values measured during the campaign, for cloudy conditions (crosses) and clear air (circles), respectively.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

[ I Q U V ] scatt = [ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] [ I Q U V ] laser .
[ 1 1 0 0 ] laser T ,
[ 1 0 0 0 0 cos 2 ψ sin 2 ψ 0 0 sin 2 ψ cos 2 ψ 0 0 0 0 1 ] ,
[ 1 cos 2 ψ sin 2 ψ 0 ] laser T .
P Q = Q I .
[ 1 0 0 0 0 C 2 + S 2 cos δ SC ( 1 cos δ ) S sin δ 0 SC ( 1 cos δ ) S 2 + C 2 cos δ C sin δ 0 S sin δ C sin δ cos δ ] ,
1 2 [ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 ] ,
1 2 [ 1 C 2 + S 2 cos δ SC ( 1 cos δ ) S sin δ 1 C 2 + S 2 cos δ SC ( 1 cos δ ) S sin δ 0 0 0 0 0 0 0 0 ] .
I tr = 1 2 [ I + Q cos 4 ( ϕ 0 + ϕ ) + U sin 4 ( ϕ 0 + ϕ ) ] ,
I tr = 1 2 [ I + Q ( 1 + cos 4 ( ϕ o + ϕ ) ) + U sin 4 ( ϕ o + ϕ ) 2 + V sin 2 ( ϕ o + ϕ ) ] ,
P L = Q 2 + U 2 I ,
P = Q 2 + U 2 + V 2 I 1.
[ m 11 m 12 0 0 m 12 m 22 0 0 0 0 m 33 m 34 0 0 m 34 m 44 ] ,
[ m 11 m 12 0 0 m 12 m 11 0 0 0 0 m 33 m 34 0 0 m 34 m 33 ] .
I = m 11 + m 12 cos 2 ψ , Q = m 12 + m 22 cos 2 ψ , U = m 33 sin 2 ψ .

Metrics