Abstract

We designed and fabricated a tungsten silicide wire-grid polarizer. To examine its polarization characteristics, the transmission spectra of the polarizer were simulated using the effective medium theory. The polarizer was fabricated based on the simulation results. The transverse magnetic (TM) polarization transmittance of the fabricated polarizer was greater than 50% over the 5μm wavelength, and the ratio of TM and transverse electric transmittance was greater than 100 (20dB) in the infrared range. This fabricated polarizer has higher durability and better compatibility with microfabrication processes than conventional infrared polarizers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Vollmer, S. Henke, D. Karstädt, K. P. Möllmann, and F. Pinno, “Identification and suppression of thermal reflections in infrared thermal imaging,” Inframation 2004 Proceedings ITC 104 (2004).
  2. G. P. Nordin, J. T. Meier, P. C. Degzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).
    [CrossRef]
  3. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886-891 (1960).
  4. J. B. Young, H. A. Graham, and E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4, 1023-1026 (1965).
  5. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6, 1023-1028 (1967).
  6. M. Saito and M. Miyagi, “Micropolarizer using anodized alumina with implanted metallic columns: theoretical analysis,” Appl. Opt. 28, 3529-3533 (1989).
  7. http://www.specac.com.
  8. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33, 258-260 (2008).
    [CrossRef]
  9. S. P. Murarka, Silicides for VLSI Application (Academic, 1986).
  10. O. Wiener, “Die Theorie des Mischkörpers für das Feld der stationären Strömung: erste Abhandlung die Mittelwertsätze für Kraft, Polarisation und Energie,” Abh. Math-Naturwiss. Kl. Säechs. Akad. Wiss. 32, 507-604 (1912).
  11. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636-679 (1935).
    [CrossRef]
  12. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  14. E. Hecht, Optics (Addison-Wesley, 1990).
  15. M. G. Moharam and T. K. Gaylord, “Rigorous couple-wave analysis of grating diffraction-E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451-455 (1983).
  16. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).

2008

1999

1989

1986

1983

1967

1965

1960

1956

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

1935

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636-679 (1935).
[CrossRef]

1912

O. Wiener, “Die Theorie des Mischkörpers für das Feld der stationären Strömung: erste Abhandlung die Mittelwertsätze für Kraft, Polarisation und Energie,” Abh. Math-Naturwiss. Kl. Säechs. Akad. Wiss. 32, 507-604 (1912).

Akioka, S.

Auton, J. P.

Bird, G. R.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636-679 (1935).
[CrossRef]

Degzman, P. C.

Gaylord, T. K.

Graham, H. A.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 1990).

Henke, S.

M. Vollmer, S. Henke, D. Karstädt, K. P. Möllmann, and F. Pinno, “Identification and suppression of thermal reflections in infrared thermal imaging,” Inframation 2004 Proceedings ITC 104 (2004).

Jones, M. W.

Karstädt, D.

M. Vollmer, S. Henke, D. Karstädt, K. P. Möllmann, and F. Pinno, “Identification and suppression of thermal reflections in infrared thermal imaging,” Inframation 2004 Proceedings ITC 104 (2004).

Kintaka, K.

Meier, J. T.

Miyagi, M.

Moharam, M. G.

Möllmann, K. P.

M. Vollmer, S. Henke, D. Karstädt, K. P. Möllmann, and F. Pinno, “Identification and suppression of thermal reflections in infrared thermal imaging,” Inframation 2004 Proceedings ITC 104 (2004).

Murarka, S. P.

S. P. Murarka, Silicides for VLSI Application (Academic, 1986).

Nishii, J.

Nordin, G. P.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Parrish, M.

Peterson, E. W.

Pinno, F.

M. Vollmer, S. Henke, D. Karstädt, K. P. Möllmann, and F. Pinno, “Identification and suppression of thermal reflections in infrared thermal imaging,” Inframation 2004 Proceedings ITC 104 (2004).

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Saito, M.

Vollmer, M.

M. Vollmer, S. Henke, D. Karstädt, K. P. Möllmann, and F. Pinno, “Identification and suppression of thermal reflections in infrared thermal imaging,” Inframation 2004 Proceedings ITC 104 (2004).

Wiener, O.

O. Wiener, “Die Theorie des Mischkörpers für das Feld der stationären Strömung: erste Abhandlung die Mittelwertsätze für Kraft, Polarisation und Energie,” Abh. Math-Naturwiss. Kl. Säechs. Akad. Wiss. 32, 507-604 (1912).

Yamada, I.

Yamagishi, Y.

Young, J. B.

Abh. Math-Naturwiss. Kl. Säechs. Akad. Wiss.

O. Wiener, “Die Theorie des Mischkörpers für das Feld der stationären Strömung: erste Abhandlung die Mittelwertsätze für Kraft, Polarisation und Energie,” Abh. Math-Naturwiss. Kl. Säechs. Akad. Wiss. 32, 507-604 (1912).

Ann. Phys.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen: I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 24, 636-679 (1935).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Sov. Phys. JETP

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

E. Hecht, Optics (Addison-Wesley, 1990).

S. P. Murarka, Silicides for VLSI Application (Academic, 1986).

M. Vollmer, S. Henke, D. Karstädt, K. P. Möllmann, and F. Pinno, “Identification and suppression of thermal reflections in infrared thermal imaging,” Inframation 2004 Proceedings ITC 104 (2004).

http://www.specac.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Model of the WSi wire-grid polarizer.

Fig. 2
Fig. 2

Complex refractive indices of WSi grating calculated using the EMT for (a) TE polarization and (b) TM polarization. The numerals next to the curves denote the fill factor assumed in calculations.

Fig. 3
Fig. 3

Simulation results for the TE and TM transmittances as a function of wavelength when (a) the fill factor of a WSi grating and the thickness of wire grid is taken as 300 nm and (b) the thickness of a WSi grating is changed and the fill factor of wire grid is taken as 0.5. The numerals next to the curves denote the fill factors and the WSi grating thickness.

Fig. 4
Fig. 4

Fabrication process of the wire-grid polarizer. (a) A WSi film was deposited on the Si substrate using the sputtering method. (b) The photoresist was coated and exposed to an interference fringe of He–Cd laser beams ( 325 nm wavelength). (c) The exposed resist was rinsed off. (d) WSi was etched off by reactive ion etching (RIE) with SF 6 gas as a mask for the photoresist.

Fig. 5
Fig. 5

Scanning electron micrograph of the wire grid.

Fig. 6
Fig. 6

Transmission spectra of the element. TE and TM indicate the polarization directions

Fig. 7
Fig. 7

Simulation results for the TE and TM transmittances as a function of wavelength by RCWA when the WSi grating period is changed. The thickness and the fill factor of WSi grating are, respectively, 300 nm and 0.5. The numerals next to the curves denote the WSi grating period.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n TE j κ TE = f ( n 1 j κ 1 ) 2 + ( 1 f ) ( n 2 j κ 2 ) 2 ,
n TM j κ TM = 1 f / ( n 1 j κ 1 ) 2 + ( 1 f ) / ( n 2 j κ 2 ) 2 .

Metrics