Abstract

The energy transfer integral between radiating rectangular and detecting circular parallel plates having nonideal angular characteristics is solved for modeling the distance dependence of the irradiance signal. The equation derived for the irradiance signal, which is called the modified inverse-square law, depends on the position, shape, size, and angular characteristics of the light source and the detector. We apply the new model equation to the calibration of a spectroradiometer to determine accurately the distance offsets, which fix the positions of the effective receiving apertures of diffusers used in the entrance optics of spectroradiometers. Earlier measurement results, e.g., for solar UV irradiance, may include uncorrected effects and can be corrected reliably as diffuser offsets and other correction factors are determined with the modified inverse-square law. Simplifications of the modified inverse-square law for analyzing the distance offsets and the correction factors are studied. Simplified equations for the diffuser offset analysis may be used without losing the accuracy when the cosine response of the diffuser is reasonably good. However, for diffusers whose angular responsivities deviate much from the cosinusoidal angular responsivity, large approximation errors in the diffuser offset values may appear if the angular effects are not properly taken into account.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription