Abstract

Two-photon laser-induced fluorescence (TP-LIF) line imaging of atomic hydrogen was investigated in a series of premixed CH4/O2/N2, H2/O2, and H2/O2/N2 flames using excitation with either picosecond or nanosecond pulsed lasers operating at 205nm. Radial TP-LIF profiles were measured for a range of pulse fluences to determine the maximum interference-free signal levels and the corresponding picosecond and nanosecond laser fluences in each of 12 flames. For an interference-free measurement, the shape of the TP-LIF profile is independent of laser fluence. For larger fluences, distortions in the profile are attributed to photodissociation of H2O, CH3, and/or other combustion intermediates, and stimulated emission. In comparison with the nanosecond laser, excitation with the picosecond laser can effectively reduce the photolytic interference and produces approximately an order of magnitude larger interference-free signal in CH4/O2/N2 flames with equivalence ratios in the range of 0.5Φ1.4, and in H2/O2 flames with 0.3Φ1.2. Although photolytic interference limits the nanosecond laser fluence in all flames, stimulated emission, occurring between the laser-excited level, H(n=3), and H(n=2), is the limiting factor for picosecond excitation in the flames with the highest H atom concentration. Nanosecond excitation is advantageous in the richest (Φ=1.64) CH4/O2/N2 flame and in H2/O2/N2 flames. The optimal excitation pulse width for interference-free H atom detection depends on the relative concentrations of hydrogen atoms and photolytic precursors, the flame temperature, and the laser path length within the flame.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, and N. M. Laurendeau, “Two-photon-excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365-367(1983).
    [CrossRef] [PubMed]
  2. J. T. Salmon and N. M. Laurendeau, “Absolute concentration measurements of atomic hydrogen in subatmospheric premixed H2/O2/N2 flat flames with photoionization controlled-loss spectroscopy,” Appl. Opt. 26, 2881-2891 (1987).
    [CrossRef] [PubMed]
  3. J. T. Salmon and N. M. Laurendeau, “Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames,” Combust. Flame 74, 221-231 (1988).
    [CrossRef]
  4. J. E. M. Goldsmith, “Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Inst. 22, 1403-1411 (1988).
  5. M. Aldén, A. L. Schawlow, S. Svanberg, W. Wendt, and P.-L. Zhang, “Three-photon-excited fluorescence detection of atomic-hydrogen in an atmospheric-pressure flame,” Opt. Lett. 9, 211-213 (1984).
    [CrossRef] [PubMed]
  6. K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315-2326(1998).
    [CrossRef]
  7. A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).
  8. J. E. M. Goldsmith, “Two-step saturated fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 10, 116-118(1985).
    [CrossRef] [PubMed]
  9. S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, “Concentration profiles in rich and sooting ethylene flames,” Proc. Combust. Inst. 21, 1033-1045 (1986).
  10. J. E. M. Goldsmith and N. M. Laurendeau, “Single-laser two-step fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 15, 576-578 (1990).
    [CrossRef] [PubMed]
  11. J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic hydrogen in flames,” J. Opt. Soc. Am. B 6, 1979-1985 (1989).
    [CrossRef]
  12. U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990).
    [CrossRef]
  13. J. A. Gray, J. E. M. Goldsmith, and R. Trebino, “Detection of atomic hydrogen by two-color laser-induced grating spectroscopy,” Opt. Lett. 18, 444-446 (1993).
    [CrossRef] [PubMed]
  14. J. A. Gray and R. Trebino, “Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames,” Chem. Phys. Lett. 216, 519-514 (1993).
    [CrossRef]
  15. K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
    [CrossRef]
  16. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
    [CrossRef]
  17. M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32, 1569-1571 (2007).
    [CrossRef] [PubMed]
  18. W. D. Kulatilaka, R. P. Lucht, S. Roy, J. R. Gord, and T. B. Settersten, “Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy,” Appl. Opt. 46, 3921-3927 (2007).
    [CrossRef] [PubMed]
  19. J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981).
    [CrossRef]
  20. W. K. Bischel, B. E. Perry, and D. R. Crosley, “Detection of fluorescence from O and H atoms induced by two-photon absorption,” Appl. Opt. 21, 1419-1429 (1982).
    [CrossRef] [PubMed]
  21. J. E. M. Goldsmith, “Photochemical effects in 205 nm, two-photon-excited fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 11, 416-418 (1986).
    [CrossRef] [PubMed]
  22. G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997).
    [CrossRef]
  23. A. B. Callear and M. P. Metcalfe, “Oscillator strengths of the bands of the B˜2A′1−X˜2A′′2 system of CD3 and a spectroscopic measurement of the recombination rate: comparison with CH3,” Chem. Phys. 14, 275-284 (1976).
    [CrossRef]
  24. K. Glänzer, M. Quack, and J. Troe, “High temperature UV absorption and recombination of methyl radicals in shock waves,” Proc. Combust. Instit. 16, 949-960 (1977).
  25. P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).
  26. L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997).
    [CrossRef]
  27. D. P. Baldwin, M. A. Buntine, and D. W. Chandler, “Photodissociation of acetylene: determination of D00(HCC─H) by photofragment imaging,” J. Chem. Phys. 93, 6578-6584(1990).
    [CrossRef]
  28. J. Vattulainen, L. Wallenius, J. Stenberg, R. Hernberg, and V. Linna, “Experimental determination of SO2, C2H2, and O2 UV absorption cross sections at elevated temperatures and pressures,” Appl. Spectrosc. 51, 1311-1315 (1997).
    [CrossRef]
  29. B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
    [CrossRef]
  30. R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
    [CrossRef]
  31. T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
    [CrossRef]
  32. J. H. Frank, X. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588-2597 (2004).
    [CrossRef] [PubMed]
  33. J. H. Frank and T. B. Settersten, “Two-photon LIF imaging of atomic oxygen in flames with picosecond excitation,” Proc. Combust. Inst. 30, 1527-1534 (2005).
    [CrossRef]
  34. S. Agrup, F. Ossler, and M. Aldén, “Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479-487 (1995).
    [CrossRef]
  35. R. J. Kee, J. Grcar, M. D. Smooke, and J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85-8240 (Sandia National Laboratories, 1985).
  36. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).
  37. J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004).
    [CrossRef]
  38. P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000).
    [CrossRef]
  39. W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation,” Proc. Combust. Inst. (to be published).

2007

2005

J. H. Frank and T. B. Settersten, “Two-photon LIF imaging of atomic oxygen in flames with picosecond excitation,” Proc. Combust. Inst. 30, 1527-1534 (2005).
[CrossRef]

2004

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004).
[CrossRef]

J. H. Frank, X. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588-2597 (2004).
[CrossRef] [PubMed]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

2003

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
[CrossRef]

2001

A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).

2000

P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000).
[CrossRef]

1998

R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315-2326(1998).
[CrossRef]

1997

G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997).
[CrossRef]

L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997).
[CrossRef]

J. Vattulainen, L. Wallenius, J. Stenberg, R. Hernberg, and V. Linna, “Experimental determination of SO2, C2H2, and O2 UV absorption cross sections at elevated temperatures and pressures,” Appl. Spectrosc. 51, 1311-1315 (1997).
[CrossRef]

1996

P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).

1995

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
[CrossRef]

S. Agrup, F. Ossler, and M. Aldén, “Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

1993

J. A. Gray, J. E. M. Goldsmith, and R. Trebino, “Detection of atomic hydrogen by two-color laser-induced grating spectroscopy,” Opt. Lett. 18, 444-446 (1993).
[CrossRef] [PubMed]

J. A. Gray and R. Trebino, “Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames,” Chem. Phys. Lett. 216, 519-514 (1993).
[CrossRef]

1990

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990).
[CrossRef]

D. P. Baldwin, M. A. Buntine, and D. W. Chandler, “Photodissociation of acetylene: determination of D00(HCC─H) by photofragment imaging,” J. Chem. Phys. 93, 6578-6584(1990).
[CrossRef]

J. E. M. Goldsmith and N. M. Laurendeau, “Single-laser two-step fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 15, 576-578 (1990).
[CrossRef] [PubMed]

1989

1988

J. T. Salmon and N. M. Laurendeau, “Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames,” Combust. Flame 74, 221-231 (1988).
[CrossRef]

J. E. M. Goldsmith, “Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Inst. 22, 1403-1411 (1988).

1987

1986

J. E. M. Goldsmith, “Photochemical effects in 205 nm, two-photon-excited fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 11, 416-418 (1986).
[CrossRef] [PubMed]

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, “Concentration profiles in rich and sooting ethylene flames,” Proc. Combust. Inst. 21, 1033-1045 (1986).

1985

1984

1983

1982

1981

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981).
[CrossRef]

1977

K. Glänzer, M. Quack, and J. Troe, “High temperature UV absorption and recombination of methyl radicals in shock waves,” Proc. Combust. Instit. 16, 949-960 (1977).

1976

A. B. Callear and M. P. Metcalfe, “Oscillator strengths of the bands of the B˜2A′1−X˜2A′′2 system of CD3 and a spectroscopic measurement of the recombination rate: comparison with CH3,” Chem. Phys. 14, 275-284 (1976).
[CrossRef]

Agrup, S.

S. Agrup, F. Ossler, and M. Aldén, “Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990).
[CrossRef]

Aldén, M.

M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32, 1569-1571 (2007).
[CrossRef] [PubMed]

S. Agrup, F. Ossler, and M. Aldén, “Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990).
[CrossRef]

M. Aldén, A. L. Schawlow, S. Svanberg, W. Wendt, and P.-L. Zhang, “Three-photon-excited fluorescence detection of atomic-hydrogen in an atmospheric-pressure flame,” Opt. Lett. 9, 211-213 (1984).
[CrossRef] [PubMed]

Amorim, J.

G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997).
[CrossRef]

Baldwin, D. P.

D. P. Baldwin, M. A. Buntine, and D. W. Chandler, “Photodissociation of acetylene: determination of D00(HCC─H) by photofragment imaging,” J. Chem. Phys. 93, 6578-6584(1990).
[CrossRef]

Baravian, G.

G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997).
[CrossRef]

Bersohn, R.

R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
[CrossRef]

Bertagnolli, K. E.

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315-2326(1998).
[CrossRef]

Bischel, W. K.

Blint, R. J.

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, “Concentration profiles in rich and sooting ethylene flames,” Proc. Combust. Inst. 21, 1033-1045 (1986).

Bokor, J.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981).
[CrossRef]

Bowman, C. T.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Brockhinke, A.

A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).

Bui-Pham, M. N.

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315-2326(1998).
[CrossRef]

Bülter, A.

A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).

Buntine, M. A.

D. P. Baldwin, M. A. Buntine, and D. W. Chandler, “Photodissociation of acetylene: determination of D00(HCC─H) by photofragment imaging,” J. Chem. Phys. 93, 6578-6584(1990).
[CrossRef]

Callear, A. B.

A. B. Callear and M. P. Metcalfe, “Oscillator strengths of the bands of the B˜2A′1−X˜2A′′2 system of CD3 and a spectroscopic measurement of the recombination rate: comparison with CH3,” Chem. Phys. 14, 275-284 (1976).
[CrossRef]

Chandler, D. W.

D. P. Baldwin, M. A. Buntine, and D. W. Chandler, “Photodissociation of acetylene: determination of D00(HCC─H) by photofragment imaging,” J. Chem. Phys. 93, 6578-6584(1990).
[CrossRef]

Chen, X.

Crosley, D. R.

Crunelle, B.

P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).

de la Rosa, M. I.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Desgroux, P.

L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997).
[CrossRef]

P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).

Dreizler, A.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
[CrossRef]

Dryer, F. L.

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004).
[CrossRef]

Eiteneer, B.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Farrow, R. L.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
[CrossRef]

P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000).
[CrossRef]

Frank, J. H.

J. H. Frank and T. B. Settersten, “Two-photon LIF imaging of atomic oxygen in flames with picosecond excitation,” Proc. Combust. Inst. 30, 1527-1534 (2005).
[CrossRef]

J. H. Frank, X. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588-2597 (2004).
[CrossRef] [PubMed]

W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation,” Proc. Combust. Inst. (to be published).

Freeman, R. R.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981).
[CrossRef]

Frenklach, M.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Gardiner, W.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Gasnot, L.

L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997).
[CrossRef]

P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).

Glänzer, K.

K. Glänzer, M. Quack, and J. Troe, “High temperature UV absorption and recombination of methyl radicals in shock waves,” Proc. Combust. Instit. 16, 949-960 (1977).

Golden, D. M.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Goldenberg, M.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Goldsmith, J. E. M.

Gonzalo, A. B.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Gord, J. R.

Gray, J. A.

J. A. Gray and R. Trebino, “Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames,” Chem. Phys. Lett. 216, 519-514 (1993).
[CrossRef]

J. A. Gray, J. E. M. Goldsmith, and R. Trebino, “Detection of atomic hydrogen by two-color laser-induced grating spectroscopy,” Opt. Lett. 18, 444-446 (1993).
[CrossRef] [PubMed]

Grcar, J.

R. J. Kee, J. Grcar, M. D. Smooke, and J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85-8240 (Sandia National Laboratories, 1985).

Grützmacher, K.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Hanna, S. F.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

Hanson, R. K.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Harris, S. J.

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, “Concentration profiles in rich and sooting ethylene flames,” Proc. Combust. Inst. 21, 1033-1045 (1986).

Hayaud, C.

G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997).
[CrossRef]

Hernberg, R.

Hertz, H. M.

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990).
[CrossRef]

Katta, V. R.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

Kazakov, A.

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004).
[CrossRef]

Kee, R. J.

R. J. Kee, J. Grcar, M. D. Smooke, and J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85-8240 (Sandia National Laboratories, 1985).

Kim, H. L.

R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
[CrossRef]

King, G. B.

Kliner, D. A. V.

P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000).
[CrossRef]

Kohse-Höinghaus, K.

A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).

Kulatilaka, W. D.

W. D. Kulatilaka, R. P. Lucht, S. Roy, J. R. Gord, and T. B. Settersten, “Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy,” Appl. Opt. 46, 3921-3927 (2007).
[CrossRef] [PubMed]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation,” Proc. Combust. Inst. (to be published).

Laurendeau, N. M.

Li, J.

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004).
[CrossRef]

Li, Z. S.

Linna, V.

Linvin, M.

Lissianski, V. V.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Lucht, R. P.

W. D. Kulatilaka, R. P. Lucht, S. Roy, J. R. Gord, and T. B. Settersten, “Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy,” Appl. Opt. 46, 3921-3927 (2007).
[CrossRef] [PubMed]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315-2326(1998).
[CrossRef]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, and N. M. Laurendeau, “Two-photon-excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365-367(1983).
[CrossRef] [PubMed]

Metcalfe, M. P.

A. B. Callear and M. P. Metcalfe, “Oscillator strengths of the bands of the B˜2A′1−X˜2A′′2 system of CD3 and a spectroscopic measurement of the recombination rate: comparison with CH3,” Chem. Phys. 14, 275-284 (1976).
[CrossRef]

Miller, J. A.

R. J. Kee, J. Grcar, M. D. Smooke, and J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85-8240 (Sandia National Laboratories, 1985).

Miller, T. A.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
[CrossRef]

Min, Z.

R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
[CrossRef]

Moriarty, N. W.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Ossler, F.

S. Agrup, F. Ossler, and M. Aldén, “Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

Patterson, B. D.

J. H. Frank, X. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588-2597 (2004).
[CrossRef] [PubMed]

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
[CrossRef]

W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation,” Proc. Combust. Inst. (to be published).

Pauwels, J. F.

L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997).
[CrossRef]

P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).

Pearce, K.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
[CrossRef]

Perry, B. E.

Preppernau, B. L.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
[CrossRef]

Qin, Z.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Quack, M.

K. Glänzer, M. Quack, and J. Troe, “High temperature UV absorption and recombination of methyl radicals in shock waves,” Proc. Combust. Instit. 16, 949-960 (1977).

Quandt, R.

R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
[CrossRef]

Rolon, J. C.

A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).

Roy, S.

Salmon, J. T.

Schawlow, A. L.

Schrader, P. E.

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
[CrossRef]

P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000).
[CrossRef]

Settersten, T. B.

W. D. Kulatilaka, R. P. Lucht, S. Roy, J. R. Gord, and T. B. Settersten, “Detection of atomic hydrogen in flames using picosecond two-color two-photon-resonant six-wave-mixing spectroscopy,” Appl. Opt. 46, 3921-3927 (2007).
[CrossRef] [PubMed]

J. H. Frank and T. B. Settersten, “Two-photon LIF imaging of atomic oxygen in flames with picosecond excitation,” Proc. Combust. Inst. 30, 1527-1534 (2005).
[CrossRef]

J. H. Frank, X. Chen, B. D. Patterson, and T. B. Settersten, “Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames,” Appl. Opt. 43, 2588-2597 (2004).
[CrossRef] [PubMed]

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
[CrossRef]

W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation,” Proc. Combust. Inst. (to be published).

Smith, G. P.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Smooke, M. D.

R. J. Kee, J. Grcar, M. D. Smooke, and J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85-8240 (Sandia National Laboratories, 1985).

Sochet, L. R.

L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997).
[CrossRef]

Song, S.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Steiger, A.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Steiger, M.

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

Stenberg, J.

Storz, R. H.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981).
[CrossRef]

Sultan, G.

G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997).
[CrossRef]

Svanberg, S.

Sweeney, D. W.

Trebino, R.

J. A. Gray and R. Trebino, “Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames,” Chem. Phys. Lett. 216, 519-514 (1993).
[CrossRef]

J. A. Gray, J. E. M. Goldsmith, and R. Trebino, “Detection of atomic hydrogen by two-color laser-induced grating spectroscopy,” Opt. Lett. 18, 444-446 (1993).
[CrossRef] [PubMed]

Troe, J.

K. Glänzer, M. Quack, and J. Troe, “High temperature UV absorption and recombination of methyl radicals in shock waves,” Proc. Combust. Instit. 16, 949-960 (1977).

Tserepi, A.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
[CrossRef]

Vattulainen, J.

Wallenius, L.

Wang, X.

R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
[CrossRef]

Weiner, A. M.

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, “Concentration profiles in rich and sooting ethylene flames,” Proc. Combust. Inst. 21, 1033-1045 (1986).

Wendt, W.

Westblom, U.

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990).
[CrossRef]

White, J. C.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981).
[CrossRef]

Wurzberg, E.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
[CrossRef]

Yaney, P. P.

P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000).
[CrossRef]

Zetterberg, J.

Zhang, P.-L.

Zhao, Z.

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. B. Settersten, A. Dreizler, B. D. Patterson, P. E. Schrader, and R. L. Farrow, “Photolytic interference affecting two-photon laser-induced fluorescence detection of atomic oxygen in hydrocarbon flames,” Appl. Phys. B 76, 479-482(2003).
[CrossRef]

S. Agrup, F. Ossler, and M. Aldén, “Measurements of collisional quenching of hydrogen-atoms in an atmospheric-pressure hydrogen oxygen flame by picosecond laser-induced fluorescence,” Appl. Phys. B 61, 479-487 (1995).
[CrossRef]

A. Brockhinke, A. Bülter, J. C. Rolon, and K. Kohse-Höinghaus, “ps-LIF measurements of minor species concentration in a counterflow diffusion flame interacting with a vortex,” Appl. Phys. B 72, 491-496 (2001).

K. Grützmacher, M. I. de la Rosa, A. B. Gonzalo, M. Steiger, and A. Steiger, “Two-photon polarization spectroscopy applied for quantitative measurements of atomic hydrogen in atmospheric pressure flames,” Appl. Phys. B 76, 775-785 (2003).
[CrossRef]

U. Westblom, S. Agrup, M. Aldén, H. M. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostic purposes,” Appl. Phys. B 50, 487-497(1990).
[CrossRef]

L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Improvement of two-photon laser induced fluorescence measurements of H- and O-atoms in premixed methane/air flames,” Appl. Phys. B 65, 639-646 (1997).
[CrossRef]

Appl. Spectrosc.

Chem. Phys.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence,” Chem. Phys. 196, 371-381 (1995).
[CrossRef]

A. B. Callear and M. P. Metcalfe, “Oscillator strengths of the bands of the B˜2A′1−X˜2A′′2 system of CD3 and a spectroscopic measurement of the recombination rate: comparison with CH3,” Chem. Phys. 14, 275-284 (1976).
[CrossRef]

Chem. Phys. Lett.

J. A. Gray and R. Trebino, “Two-photon-resonant four-wave-mixing spectroscopy of atomic hydrogen in flames,” Chem. Phys. Lett. 216, 519-514 (1993).
[CrossRef]

Combust. Flame

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic, atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

J. T. Salmon and N. M. Laurendeau, “Concentration measurements of atomic hydrogen in subatmospheric premixed C2H4/O2/Ar flat flames,” Combust. Flame 74, 221-231 (1988).
[CrossRef]

Int. J. Chem. Kinet.

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566-575 (2004).
[CrossRef]

J. Appl. Phys.

K. E. Bertagnolli, R. P. Lucht, and M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315-2326(1998).
[CrossRef]

G. Baravian, G. Sultan, J. Amorim, and C. Hayaud, “Laser detection of CH2 in CH4-H2 mixture dc discharges,” J. Appl. Phys. 82, 3615-3617 (1997).
[CrossRef]

J. Chem. Phys.

D. P. Baldwin, M. A. Buntine, and D. W. Chandler, “Photodissociation of acetylene: determination of D00(HCC─H) by photofragment imaging,” J. Chem. Phys. 93, 6578-6584(1990).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

R. Quandt, X. Wang, Z. Min, H. L. Kim, and R. Bersohn, “One-color molecular photodissociation and detection of hydrogen atoms,” J. Phys. Chem. A 4102, 6063-6067 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. A

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n=3 level in H and D atoms,” Phys. Rev. A 24, 612-614 (1981).
[CrossRef]

Proc. Combust. Inst.

P. Desgroux, L. Gasnot, B. Crunelle, and J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” Proc. Combust. Inst. 26, 967-974 (1996).

J. E. M. Goldsmith, “Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” Proc. Combust. Inst. 22, 1403-1411 (1988).

S. J. Harris, A. M. Weiner, R. J. Blint, and J. E. M. Goldsmith, “Concentration profiles in rich and sooting ethylene flames,” Proc. Combust. Inst. 21, 1033-1045 (1986).

J. H. Frank and T. B. Settersten, “Two-photon LIF imaging of atomic oxygen in flames with picosecond excitation,” Proc. Combust. Inst. 30, 1527-1534 (2005).
[CrossRef]

W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Interference-free two-photon LIF imaging of atomic hydrogen in flames using picosecond excitation,” Proc. Combust. Inst. (to be published).

Proc. Combust. Instit.

K. Glänzer, M. Quack, and J. Troe, “High temperature UV absorption and recombination of methyl radicals in shock waves,” Proc. Combust. Instit. 16, 949-960 (1977).

Rev. Sci. Instrum.

P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71, 1296-1305 (2000).
[CrossRef]

Other

R. J. Kee, J. Grcar, M. D. Smooke, and J. A. Miller, “A Fortran program for modeling steady laminar one-dimensional premixed flames,” Tech. Rep. SAND85-8240 (Sandia National Laboratories, 1985).

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. Gardiner, Jr., V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0,” http://www.me.berkeley.edu/gri_mech/ (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement for 205 nm excitation of atomic hydrogen TP-LIF in flames using ns- and ps-laser pulses. The 656 nm fluorescence is imaged perpendicular to the laser propagation direction and detected by a ICCD using a Gen III intensifier. Forward-propagating SE (dashed lines) is detected with a silicon p-i-n photodiode (PD). HG: third-harmonic generation, CL1: f / 1.4 50 mm camera lens, CL2: f / 1.2 50 mm camera lens, IF: H α interference filter, DM: 205 nm dichroic mirror, JM: pyroelectric joulemeter, BK7: 9.5 mm thick glass flat, ND: calibrated neutral- density filters.

Fig. 2
Fig. 2

Peak-normalized radial LIF profiles in CH 4 / O 2 / N 2 flames. Excitation with (a)–(f) ps pulses and (g)–(l) ns pulses. Pulse fluences ( J / cm 2 ) are indicated in the legend. Maximum interference-free ps profiles from (a)–(f) are also shown as magenta curves in (g)–(l), respectively.

Fig. 3
Fig. 3

Maximum interference-free LIF signal versus equivalence ratio for ps and ns excitation in CH 4 / O 2 / N 2 flames.

Fig. 4
Fig. 4

Stimulated emission signal as a function of ps-laser pulse fluence in CH 4 / O 2 / N 2 flames.

Fig. 5
Fig. 5

Peak-normalized radial LIF profiles in H 2 / O 2 flames. Excitation with (a)–(d) ps pulses and (e)–(h) ns pulses. Pulse fluences ( J / cm 2 ) are indicated in the legend. Maximum interference-free ps profiles from (a)–(d) are also shown as magenta curves in (e)–(h), respectively.

Fig. 6
Fig. 6

Peak-normalized radial LIF profiles in H 2 / O 2 / N 2 flames. Excitation with (a)–(b) ps pulses and (c)–(d) ns pulses. Pulse fluences ( J / cm 2 ) are indicated in the legend. Maximum interference-free ps profiles from (a)–(b) are also shown as magenta curves in (c)–(d), respectively.

Fig. 7
Fig. 7

Maximum interference-free LIF signal versus equivalence ratio for ps and ns excitation in H 2 / O 2 flames.

Tables (4)

Tables Icon

Table 1 Gas-Flow Rates (Standard Liters per Minute) and Calculated Adiabatic Flame Temperatures and Peak Atomic Hydrogen Number Densities for Premixed CH 4 / O 2 / N 2 Flames

Tables Icon

Table 2 Gas-Flow Rates (Standard Liters per Minute) and Calculated Adiabatic Flame Temperatures and Peak Atomic Hydrogen Number Densities for Premixed H 2 / O 2 and H 2 / O 2 / N 2 Flames

Tables Icon

Table 3 Maximum Laser Fluence for Interference-Free LIF Measurement and SE Threshold Fluence for Picosecond and Nanosecond Excitation in CH 4 / O 2 / N 2 Flames

Tables Icon

Table 4 Maximum Laser Fluence for Interference-Free LIF Measurement and SE Threshold Fluence for Picosecond and Nanosecond Excitation in H 2 / O 2 and H 2 / O 2 / N 2 Flames

Metrics