Abstract

Raman measurements of two common gases are made using a simple multipass capillary Raman cell (MCC) coupled to an unfiltered 18 around 1 fiber-optic Raman probe. The MCC, which is fabricated by chemical deposition of silver on the inner walls of a 2 mm inner diameter glass capillary tube, gives up to 20-fold signal enhancements for nonabsorbing gases. The device is relatively small and suitable for remote and in situ Raman measurements with optical fibers. The optical behavior of the MCC is similar to previously described liquid-core waveguides and hollow metal-coated waveguides used for laser transmission, but unlike the former devices, the MCC is generally applicable to a very wide range of nonabsorbing gases.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows

Radu M. Mihalcea, Douglas S. Baer, and Ronald K. Hanson
Appl. Opt. 36(33) 8745-8752 (1997)

Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser

Yuji Oki, Shinichiro Nakazono, Yuji Nonaka, and Mitsuo Maeda
Opt. Lett. 25(14) 1040-1042 (2000)

Flexible silver-coated hollow fibers for remote Raman spectroscopic measurements

Bing-Hong Liu and Yi-Wei Shi
Appl. Opt. 52(21) 5165-5170 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription