Abstract

We have developed a binocular open-view Shack–Hartmann wavefront sensor for measuring time variation of binocular accommodation, vergence, pupil sizes (i.e., the binocular near triad), and monochromatic aberrations. The device measures these values16 times per second for up to 1min. Our purpose is to introduce the new instrument. We have confirmed the accuracy of the device. Refractions for a 4mm pupil were accurate across the range of measurements of model eyes and normal human eyes. We measured binocular dynamics of accommodation, vergence, and spherical aberrations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Campbell, “Correlation of accommodation between the two eyes,” J. Opt. Soc. Am. 50, 738 (1960).
    [CrossRef] [PubMed]
  2. F. W. Campbell and J. G. Robson, “High-speed infrared optometer,” J. Opt. Soc. Am. 49, 268-272 (1959).
    [CrossRef] [PubMed]
  3. H. D. Crane and C. M. Steele, “Accurate three-dimensional eyetracker,” Appl. Opt. 17, 691-765 (1978).
    [CrossRef] [PubMed]
  4. F. Okuyama, T. Tokoro, and M. Fujieda, “Binocular infrared optometer for measuring accommodation in both eyes simultaneously in natural-viewing conditions,” Appl. Opt. 32, 4147-4154 (1993).
    [CrossRef] [PubMed]
  5. T. Takeda, Y. Fukui, and T. Iida, “Three-dimensional optometer,” Appl. Opt. 27, 2595-2602 (1988).
    [CrossRef] [PubMed]
  6. K. Ukai and Y. Kato, “The use of video refraction to measure the dynamic properties of the near triad in observers of a 3-D display,” Ophthalmic Physiol. Opt. 22, 385-388 (2002).
    [CrossRef] [PubMed]
  7. M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
    [CrossRef]
  8. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  9. N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
    [CrossRef]
  10. T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
    [CrossRef] [PubMed]
  11. T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
    [CrossRef] [PubMed]
  12. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
    [CrossRef]
  13. N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
    [CrossRef]
  14. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18, 497-506 (2001).
    [CrossRef]
  15. D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
    [CrossRef] [PubMed]
  16. F. W. Campbell and D. G. Green, “Monocular versus binocular visual acuity,” Nature 208, 191-192 (1965).
    [CrossRef] [PubMed]
  17. Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
    [CrossRef]
  18. S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
    [CrossRef]
  19. W. H. Ridder 3rd, A. Tomlinson, and J. Paugh, “Effect of artificial tears on visual performance in subjects with dry eye,” Optom. Vision Sci. 82, 835-842 (2005).
    [CrossRef]
  20. J. Sheedy, P. Schanz, and M. Bullimore, “Evaluation of an automated subjective refractor,” Optom. Vision Sci. 81, 334-340 (2004).
    [CrossRef]
  21. T. Dave and Y. Fukuma, “Clinical evaluation of the Topcon BV-1000 automated subjective refraction system,” Optom Vision Sci. 81, 323-333 (2004).
    [CrossRef]
  22. J. C. Barry and A. Backes, “Limbus versus pupil center for ocular alignment measurement with corneal reflexes,” Invest. Ophthalmol. Vision Sci. 38, 2597-2607 (1997).
  23. T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
    [CrossRef] [PubMed]
  24. “Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers,” http://www.alacron.com/downloads/vncl98076xz/CameraLinkSPEC.pdf.
  25. H. C. Howland, “High order wave aberration of eyes,” Ophthalmic Physiolog. Opt. 22, 434-439 (2002).
    [CrossRef]
  26. S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
    [CrossRef] [PubMed]

2008 (1)

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

2006 (3)

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

2005 (1)

W. H. Ridder 3rd, A. Tomlinson, and J. Paugh, “Effect of artificial tears on visual performance in subjects with dry eye,” Optom. Vision Sci. 82, 835-842 (2005).
[CrossRef]

2004 (5)

J. Sheedy, P. Schanz, and M. Bullimore, “Evaluation of an automated subjective refractor,” Optom. Vision Sci. 81, 334-340 (2004).
[CrossRef]

T. Dave and Y. Fukuma, “Clinical evaluation of the Topcon BV-1000 automated subjective refraction system,” Optom Vision Sci. 81, 323-333 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

2002 (5)

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

H. C. Howland, “High order wave aberration of eyes,” Ophthalmic Physiolog. Opt. 22, 434-439 (2002).
[CrossRef]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

K. Ukai and Y. Kato, “The use of video refraction to measure the dynamic properties of the near triad in observers of a 3-D display,” Ophthalmic Physiol. Opt. 22, 385-388 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

1997 (1)

J. C. Barry and A. Backes, “Limbus versus pupil center for ocular alignment measurement with corneal reflexes,” Invest. Ophthalmol. Vision Sci. 38, 2597-2607 (1997).

1994 (1)

1993 (1)

1988 (1)

1978 (1)

1965 (1)

F. W. Campbell and D. G. Green, “Monocular versus binocular visual acuity,” Nature 208, 191-192 (1965).
[CrossRef] [PubMed]

1960 (1)

1959 (1)

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Aragon, J. L.

Artal, P.

Backes, A.

J. C. Barry and A. Backes, “Limbus versus pupil center for ocular alignment measurement with corneal reflexes,” Invest. Ophthalmol. Vision Sci. 38, 2597-2607 (1997).

Bando, T.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

Barry, J. C.

J. C. Barry and A. Backes, “Limbus versus pupil center for ocular alignment measurement with corneal reflexes,” Invest. Ophthalmol. Vision Sci. 38, 2597-2607 (1997).

Bessho, K.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

Bille, J. F.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Bullimore, M.

J. Sheedy, P. Schanz, and M. Bullimore, “Evaluation of an automated subjective refractor,” Optom. Vision Sci. 81, 334-340 (2004).
[CrossRef]

Campbell, F. W.

Choi, M.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Collins, M. J.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Crane, H. D.

Dave, T.

T. Dave and Y. Fukuma, “Clinical evaluation of the Topcon BV-1000 automated subjective refraction system,” Optom Vision Sci. 81, 323-333 (2004).
[CrossRef]

Fujieda, M.

Fujikado, T.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

Fukui, Y.

Fukuma, Y.

T. Dave and Y. Fukuma, “Clinical evaluation of the Topcon BV-1000 automated subjective refraction system,” Optom Vision Sci. 81, 323-333 (2004).
[CrossRef]

Gilmartin, B.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

Goelz, S.

Green, D. G.

F. W. Campbell and D. G. Green, “Monocular versus binocular visual acuity,” Nature 208, 191-192 (1965).
[CrossRef] [PubMed]

Grimm, B.

Hiraoka, T.

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

Hirohara, Y.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

Hofer, H.

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Hori, Y.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

Howland, H. C.

H. C. Howland, “High order wave aberration of eyes,” Ophthalmic Physiolog. Opt. 22, 434-439 (2002).
[CrossRef]

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Iida, T.

Iijima, A.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

Inoue, T.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

Iskander, D. R.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Kato, Y.

K. Ukai and Y. Kato, “The use of video refraction to measure the dynamic properties of the near triad in observers of a 3-D display,” Ophthalmic Physiol. Opt. 22, 385-388 (2002).
[CrossRef] [PubMed]

Kiuchi, T.

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

Koh, S.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

Kuroda, T.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

Liang, J.

Maeda, N.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

Mihashi, T.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

Miyata, K.

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

Morelande, M. R.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Ninomiya, S.

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

Nishida, K.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

Okada, Y.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

Okamoto, F.

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

Okuyama, F.

Oshika, T.

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

Paugh, J.

W. H. Ridder 3rd, A. Tomlinson, and J. Paugh, “Effect of artificial tears on visual performance in subjects with dry eye,” Optom. Vision Sci. 82, 835-842 (2005).
[CrossRef]

Ridder, W. H.

W. H. Ridder 3rd, A. Tomlinson, and J. Paugh, “Effect of artificial tears on visual performance in subjects with dry eye,” Optom. Vision Sci. 82, 835-842 (2005).
[CrossRef]

Robson, J. G.

Samejima, T.

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

Schaeffel, F.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Schanz, P.

J. Sheedy, P. Schanz, and M. Bullimore, “Evaluation of an automated subjective refractor,” Optom. Vision Sci. 81, 334-340 (2004).
[CrossRef]

Seidemann, A.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Sheedy, J.

J. Sheedy, P. Schanz, and M. Bullimore, “Evaluation of an automated subjective refractor,” Optom. Vision Sci. 81, 334-340 (2004).
[CrossRef]

Singer, B.

Steele, C. M.

Takeda, T.

Tano, Y.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Tokoro, T.

Tomlinson, A.

W. H. Ridder 3rd, A. Tomlinson, and J. Paugh, “Effect of artificial tears on visual performance in subjects with dry eye,” Optom. Vision Sci. 82, 835-842 (2005).
[CrossRef]

Ukai, K.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

K. Ukai and Y. Kato, “The use of video refraction to measure the dynamic properties of the near triad in observers of a 3-D display,” Ophthalmic Physiol. Opt. 22, 385-388 (2002).
[CrossRef] [PubMed]

Watanabe, H.

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

Weiss, S.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Wilhelm, B.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Wilhelm, H.

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

Williams, D. R.

Wolffsohn, J. S.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

Yamane, N.

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

Zhu, M.

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, “Wavefront analysis in eyes with nuclear or cortical cataract,” Am. J. Ophthalmol. 134, 1-9 (2002).
[CrossRef] [PubMed]

S. Ninomiya, T. Fujikado, T. Kuroda, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, “Changes of ocular aberration with accommodation,” Am. J. Ophthalmol. 134, 924-926 (2002).
[CrossRef] [PubMed]

Appl. Opt. (3)

IEEE Trans. Biomed. Eng. (1)

D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51, 1969-1980 (2004).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vision Sci. (2)

S. Koh, N. Maeda, Y. Hirohara, T. Mihashi, K. Bessho, Y. Hori, T. Inoue, H. Watanabe, T. Fujikado, and Y. Tano, “Serial measurements of higher-order aberrations after blinking in patients with dry eye,” Invest. Ophthalmol. Vision Sci. 49, 133-138 (2008).
[CrossRef]

J. C. Barry and A. Backes, “Limbus versus pupil center for ocular alignment measurement with corneal reflexes,” Invest. Ophthalmol. Vision Sci. 38, 2597-2607 (1997).

Invest. Ophthalmol. Visual Sci. (1)

N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi, and T. Oshika, “Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis,” Invest. Ophthalmol. Visual Sci. 45, 3986-3990 (2004).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Vision (1)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004).
[CrossRef]

Jpn. J. Ophthalmol. (2)

T. Mihashi, Y. Hirohara, S. Koh, S. Ninomiya, N. Maeda, and T. Fujikado, “Tear film break-up time evaluated by real-time Hartmann-Shack wavefront sensing,” Jpn. J. Ophthalmol. 50, 85-89 (2006).
[CrossRef] [PubMed]

T. Mihashi, Y. Hirohara, K. Bessho, N. Maeda, T. Oshika, and T. Fujikado, “Intensity analysis of Hartmann-Shack images in cataractous, keratoconic, and normal eyes to investigate light scattering,” Jpn. J. Ophthalmol. 50, 323-333 (2006).
[CrossRef] [PubMed]

Nature (1)

F. W. Campbell and D. G. Green, “Monocular versus binocular visual acuity,” Nature 208, 191-192 (1965).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

K. Ukai and Y. Kato, “The use of video refraction to measure the dynamic properties of the near triad in observers of a 3-D display,” Ophthalmic Physiol. Opt. 22, 385-388 (2002).
[CrossRef] [PubMed]

Ophthalmic Physiolog. Opt. (1)

H. C. Howland, “High order wave aberration of eyes,” Ophthalmic Physiolog. Opt. 22, 434-439 (2002).
[CrossRef]

Ophthalmology Annual (1)

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology Annual 109, 1996-2003 (2002).
[CrossRef]

Optom Vision Sci. (1)

T. Dave and Y. Fukuma, “Clinical evaluation of the Topcon BV-1000 automated subjective refraction system,” Optom Vision Sci. 81, 323-333 (2004).
[CrossRef]

Optom. Vision Sci. (3)

M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vision Sci. 77, 537-548 (2000).
[CrossRef]

W. H. Ridder 3rd, A. Tomlinson, and J. Paugh, “Effect of artificial tears on visual performance in subjects with dry eye,” Optom. Vision Sci. 82, 835-842 (2005).
[CrossRef]

J. Sheedy, P. Schanz, and M. Bullimore, “Evaluation of an automated subjective refractor,” Optom. Vision Sci. 81, 334-340 (2004).
[CrossRef]

Vision Res. (1)

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus--and convergence-driven accommodative stimuli,” Vision Res. 46, 475-484 (2006).
[CrossRef]

Other (1)

“Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers,” http://www.alacron.com/downloads/vncl98076xz/CameraLinkSPEC.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the apparatus. Two optical paths including wavefront sensors were used for the consecutive measurements of the near triad variables and monochromatic aberrations of both eyes. Two computers (PC1 and PC2) were employed to collect and analyze the wavefront sensing data and the other computer (PC3) controlled the system, sending stepper motor alignment data. Measurements were performed while the subject looked at the visual target.

Fig. 2
Fig. 2

Schematic figure of the optics in the wavefront sensor. 840 nm superluminescent diode (SLD) light was used for measuring the refraction and aberrations of the eye. A polarized beam splitter and a quarter-wave plate were used to eliminate noisy light reflected from the objective lens. For alignment of the eye, LED940 was used to generate a corneal reflex and LED940-2 was for illuminating the anterior part of the eye to be observed with CCD2. Dichroic mirror 1 was for separating 840 nm light for wavefront sensing and 940 nm light for alignment. Dichroic mirror 2 was for separating the near infrared light for measurement and the visible light used in the visual stimulus.

Fig. 3
Fig. 3

Sampled image intensity profiles of the BOSHWS with and without a quarter-wave plate. These were related to different design concepts. With the wave plate used in our new design the average of the intensity was twice as much as that without the plate.

Fig. 4
Fig. 4

Results of calibration of S.E. for the two optical units using a motor controlled model eye with variable refraction. The model eye was calibrated at the Topcon factory. A linear regression analysis was performed between the refraction measurement data (dependent variable) and the values of the model eye (independent variable). S Y | X is a standard error of estimate after the regression analysis.

Fig. 5
Fig. 5

Results of refraction measurements of normal human eyes. The horizontal axis represents refraction from the commercial wavefront sensor and the vertical axis is for the BOSHWS. A linear regression was calculated for each dataset. S Y | X is a standard error of estimate after the regression analysis.

Fig. 6
Fig. 6

Schematic figure of the experiment. The purpose of the experiment was to measure accommodative responses to step stimuli. M1 is a near stimulus and M2 is a far stimulus.

Fig. 7
Fig. 7

Results of measurements of two subjects with the step stimuli ( 1.7 D and 1.3 D ) shown in Fig. 6. Graphs (a) and (e) are stimulus positions, vergence, and accommodation, (b) and (f) are horizontal eye movement, (c) and (g) are pupil diameters, and (d) and (h) are spherical aberrations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( r d ) sin θ .
S . E . = 4 c 2 0 r 2 ,
vergence = arctan ( P D / 2 L ) ,

Metrics