Abstract

Noncontact long-range position sensing is desirable for a number of applications. We have designed and fabricated a monolithically integrated vertical-cavity surface-emitting laser (VCSEL) and p-type/ intrinsic/n-type (PIN) photodetectors for optical position sensing. Calculations using the reflection from a periodic metallic corrugation as a position gauge indicate resolution in the submicron regime. High device uniformity is obtained using novel fabrication techniques. We observe a threshold current of 0.52mA for the VCSELs and a detector responsivity of 0.38A/W at 840nm. The optical cross talk between VCSELs and detectors is also quantified.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
    [CrossRef]
  2. G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
    [CrossRef]
  3. A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
    [CrossRef]
  4. P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
    [CrossRef]
  5. M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
    [CrossRef]
  6. E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
    [CrossRef]
  7. H. Miyajima, E. Yamamoto, and K. Yanagisawa, “Optical micro encoder with sub-micron resolution using a VCSEL,” Sens. Actuators A, Phys. 71, 213-218 (1998).
    [CrossRef]
  8. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  9. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  10. J. A. Kong, Electromagnetic Wave Theory (EMW, 2000).
  11. M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
    [CrossRef]
  12. K. D. Choquette and K. M. Geib, “Fabrication and performance of vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge, 1999), pp. 193-232.
  13. P. O. Leisher, J. J. Raftery, Jr., A M. Kasten, and K. D. Choquette, “Etch damage and deposition repair of vertical cavity surface emitting lasers,” J. Vac. Sci. Technol. B 24, 104-107 (2006).
    [CrossRef]
  14. K. D. Choquette, N. Tabatabaie, and R. E. Leibenguth, “Detector-enclosed vertical-cavity surface emitting lasers,” Electron. Lett. 29, 466-467 (1993).
    [CrossRef]

2006

M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
[CrossRef]

P. O. Leisher, J. J. Raftery, Jr., A M. Kasten, and K. D. Choquette, “Etch damage and deposition repair of vertical cavity surface emitting lasers,” J. Vac. Sci. Technol. B 24, 104-107 (2006).
[CrossRef]

2004

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

2002

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

2000

J. A. Kong, Electromagnetic Wave Theory (EMW, 2000).

1999

K. D. Choquette and K. M. Geib, “Fabrication and performance of vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge, 1999), pp. 193-232.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
[CrossRef]

1998

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

H. Miyajima, E. Yamamoto, and K. Yanagisawa, “Optical micro encoder with sub-micron resolution using a VCSEL,” Sens. Actuators A, Phys. 71, 213-218 (1998).
[CrossRef]

1997

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

1996

G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
[CrossRef]

1993

K. D. Choquette, N. Tabatabaie, and R. E. Leibenguth, “Detector-enclosed vertical-cavity surface emitting lasers,” Electron. Lett. 29, 466-467 (1993).
[CrossRef]

1991

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

1989

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Alduino, A. C.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Carey, G.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Chandran, M.

M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
[CrossRef]

Cheng, J.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
[CrossRef]

G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
[CrossRef]

Cho, A. Y.

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

Choquette, K. D.

P. O. Leisher, J. J. Raftery, Jr., A M. Kasten, and K. D. Choquette, “Etch damage and deposition repair of vertical cavity surface emitting lasers,” J. Vac. Sci. Technol. B 24, 104-107 (2006).
[CrossRef]

K. D. Choquette and K. M. Geib, “Fabrication and performance of vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge, 1999), pp. 193-232.

K. D. Choquette, N. Tabatabaie, and R. E. Leibenguth, “Detector-enclosed vertical-cavity surface emitting lasers,” Electron. Lett. 29, 466-467 (1993).
[CrossRef]

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

Cook, L. J.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Deich, J.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Dutta, N. K.

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

Geib, K. M.

K. D. Choquette and K. M. Geib, “Fabrication and performance of vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge, 1999), pp. 193-232.

Ha, W.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Hains, C. P.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
[CrossRef]

G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
[CrossRef]

Harris, J. S.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Hasnain, G.

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

Hobson, W. S.

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

Hou, H. Q.

G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
[CrossRef]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

Kasten, A M.

P. O. Leisher, J. J. Raftery, Jr., A M. Kasten, and K. D. Choquette, “Etch damage and deposition repair of vertical cavity surface emitting lasers,” J. Vac. Sci. Technol. B 24, 104-107 (2006).
[CrossRef]

Kazlas, P.

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (EMW, 2000).

Leibenguth, R. E.

K. D. Choquette, N. Tabatabaie, and R. E. Leibenguth, “Detector-enclosed vertical-cavity surface emitting lasers,” Electron. Lett. 29, 466-467 (1993).
[CrossRef]

Leisher, P. O.

P. O. Leisher, J. J. Raftery, Jr., A M. Kasten, and K. D. Choquette, “Etch damage and deposition repair of vertical cavity surface emitting lasers,” J. Vac. Sci. Technol. B 24, 104-107 (2006).
[CrossRef]

Levi, O.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Lewis, D.

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

Lopata, J.

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

Lorch, S.

M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
[CrossRef]

Luong, S. Q.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Michalzik, R.

M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
[CrossRef]

Miyajima, H.

H. Miyajima, E. Yamamoto, and K. Yanagisawa, “Optical micro encoder with sub-micron resolution using a VCSEL,” Sens. Actuators A, Phys. 71, 213-218 (1998).
[CrossRef]

Moerner, W. E.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Ortiz, G. G.

G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
[CrossRef]

Paananen, D.

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

Raftery, J. J.

P. O. Leisher, J. J. Raftery, Jr., A M. Kasten, and K. D. Choquette, “Etch damage and deposition repair of vertical cavity surface emitting lasers,” J. Vac. Sci. Technol. B 24, 104-107 (2006).
[CrossRef]

Rinaldi, F.

M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
[CrossRef]

Scott, J.

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

Smith, S. J.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Stach, M.

M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
[CrossRef]

Swirhun, S.

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

Tabatabaie, N.

K. D. Choquette, N. Tabatabaie, and R. E. Leibenguth, “Detector-enclosed vertical-cavity surface emitting lasers,” Electron. Lett. 29, 466-467 (1993).
[CrossRef]

Tai, K.

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

Tayahi, M. B.

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

Thrush, E.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

Vakhshoori, D.

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

Wang, Y. H.

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

Wasserbauer, J.

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

Weir, B. E.

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

Wynn, J.

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

Yamamoto, E.

H. Miyajima, E. Yamamoto, and K. Yanagisawa, “Optical micro encoder with sub-micron resolution using a VCSEL,” Sens. Actuators A, Phys. 71, 213-218 (1998).
[CrossRef]

Yanagisawa, K.

H. Miyajima, E. Yamamoto, and K. Yanagisawa, “Optical micro encoder with sub-micron resolution using a VCSEL,” Sens. Actuators A, Phys. 71, 213-218 (1998).
[CrossRef]

Zhou, Y.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
[CrossRef]

Zolper, J. C.

G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
[CrossRef]

Electron. Lett.

G. Hasnain, K. Tai, Y. H. Wang, K. D. Choquette, B. E. Weir, N. K. Dutta, and A. Y. Cho, “Monolithic integration of photodetector with vertical cavity surface emitting laser,” Electron. Lett. 27, 1630-1632 (1991).
[CrossRef]

G. G. Ortiz, C. P. Hains, J. Cheng, H. Q. Hou, and J. C. Zolper, “Monolithic integration of In02Ga08As vertical-cavity surface-emitting lasers with resonance-enhanced quantum well photodetectors,” Electron. Lett. 32, 1205-1207(1996).
[CrossRef]

M. B. Tayahi, N. K. Dutta, W. S. Hobson, D. Vakhshoori, J. Lopata, and J. Wynn, “High power InGaAs/GaAsP/lnGaP surface emitting laser,” Electron. Lett. 33, 1794-1795(1997).
[CrossRef]

K. D. Choquette, N. Tabatabaie, and R. E. Leibenguth, “Detector-enclosed vertical-cavity surface emitting lasers,” Electron. Lett. 29, 466-467 (1993).
[CrossRef]

IEEE J. Quantum Electron.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris Jr., “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical flourescence sensing,” IEEE J. Quantum Electron. 40, 491-498 (2004).
[CrossRef]

IEEE Photonics Technol. Lett.

A. C. Alduino, S. Q. Luong, Y. Zhou, C. P. Hains, and J. Cheng, “Quasi-planar monolithic integration of high-speed VCSEL and resonant enhanced photodetector arrays,” IEEE Photonics Technol. Lett. 11, 512-514 (1999).
[CrossRef]

P. Kazlas, J. Wasserbauer, J. Scott, D. Paananen, S. Swirhun, and D. Lewis, “Monolithic vertical-cavity laser/p-i-n photodiode transceiver array for optical interconnects,” IEEE Photonics Technol. Lett. 10, 1530-1532 (1998).
[CrossRef]

M. Stach, F. Rinaldi, M. Chandran, S. Lorch, and R. Michalzik, “Bidirectional optical interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM,” IEEE Photonics Technol. Lett. 18, 2386-2388 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

P. O. Leisher, J. J. Raftery, Jr., A M. Kasten, and K. D. Choquette, “Etch damage and deposition repair of vertical cavity surface emitting lasers,” J. Vac. Sci. Technol. B 24, 104-107 (2006).
[CrossRef]

Sens. Actuators A, Phys.

H. Miyajima, E. Yamamoto, and K. Yanagisawa, “Optical micro encoder with sub-micron resolution using a VCSEL,” Sens. Actuators A, Phys. 71, 213-218 (1998).
[CrossRef]

Other

J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

J. A. Kong, Electromagnetic Wave Theory (EMW, 2000).

K. D. Choquette and K. M. Geib, “Fabrication and performance of vertical-cavity surface-emitting lasers,” in Vertical-Cavity Surface-Emitting Lasers, C. Wilmsen, H. Temkin, and L. A. Coldren, eds. (Cambridge, 1999), pp. 193-232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the position-sensing configuration. The light reflected from the corrugation is measured by the photodetectors as the corrugation translates parallel to the sensor die.

Fig. 2
Fig. 2

Optical image of three sensing configurations of a VCSEL surrounded by PIN detectors. The VCSEL is in the center of each die.

Fig. 3
Fig. 3

Backscattered field from a triangular corrugation placed 75 λ from the laser source whose center is at x = 0 .

Fig. 4
Fig. 4

Normalized incident power on the detectors as the corrugation moves to the right. The horizontal axis is normalized to the corrugation period. The solid and dashed lines correspond to the detectors to the left and right of the VCSEL, respectively. (a), (b), and (c) correspond to the detector geometries shown in Figs. 2a, 2b, 2c, respectively.

Fig. 5
Fig. 5

Fabricated VCSEL–PIN detector cross section.

Fig. 6
Fig. 6

Light output versus current curves for 19 neighboring VCSELs with 9 μm oxide aperture.

Fig. 7
Fig. 7

Detector current versus voltage curves under different levels of illumination.

Fig. 8
Fig. 8

Cross talk characteristic between central VCSEL and two surrounding detectors as the VCSEL bias is varied. The solid curve is the laser output power, and the dotted curve and the dashed curve are the measured photocurrent induced in the closest and second closest detectors, respectively.

Metrics