Abstract

This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wave length range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern’s geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14, 945-949 (2004).
    [CrossRef]
  2. C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
    [CrossRef]
  3. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14, 1339-1365 (2002).
    [CrossRef]
  4. S. P. Pogossian, L. Vescan, and A. Vonsovici, “Single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851-1853 (1998).
    [CrossRef]
  5. A. Neyer, T. Knoche, and L. Muller, “Fabrication of low-loss polymer waveguides using injection-molding technology,” Electron. Lett. 29, 399-401 (1993).
    [CrossRef]
  6. P. R. Ashley and T. A. Tumolillo, Jr., “Channel waveguides in electro-optic polymers using a photopolymer cladding technique,” Appl. Phys. Lett. 58, 884-886 (1991).
    [CrossRef]
  7. M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
    [CrossRef]
  8. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
    [CrossRef]
  9. R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng. 13, 80-88 (2003).
    [CrossRef]
  10. A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
    [CrossRef]
  11. A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
    [CrossRef]
  12. H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
    [CrossRef]
  13. J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
    [CrossRef]
  14. D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).
  15. J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277-1279 (2003).
    [CrossRef]
  16. T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
    [CrossRef]
  17. W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110-2012 (2001).
    [CrossRef]
  18. R. Panergo, C.-S. Huang, C.-S. Liu, P. G. Reinhall, and W.-C. Wang, “Resonant polymeric waveguide cantilever integrated for optical scanning,” J. Lightwave Technol. 25, 850-860(2007).
    [CrossRef]
  19. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971-1974 (1991).
    [CrossRef]
  20. O. Powell, “Single mode condition for silicon rib waveguide,” J. Lightwave Technol. 20, 1851-1855 (2002).
    [CrossRef]
  21. A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771-1776 (1994).
    [CrossRef]
  22. E. Kim, X. M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three imensional structures on surface of polymers,” Adv. Mater. 9, 651-654 (1997).
    [CrossRef]
  23. Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    [CrossRef]
  24. Z.-G. Ling, K. Lian, and L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” Proc. SPIE 3999, 1019-1027 (2000).
    [CrossRef]

2007 (1)

2006 (1)

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

2005 (4)

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
[CrossRef]

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

2004 (1)

C.-G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14, 945-949 (2004).
[CrossRef]

2003 (4)

C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
[CrossRef]

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277-1279 (2003).
[CrossRef]

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng. 13, 80-88 (2003).
[CrossRef]

2002 (2)

O. Powell, “Single mode condition for silicon rib waveguide,” J. Lightwave Technol. 20, 1851-1855 (2002).
[CrossRef]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

2001 (1)

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110-2012 (2001).
[CrossRef]

2000 (1)

Z.-G. Ling, K. Lian, and L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” Proc. SPIE 3999, 1019-1027 (2000).
[CrossRef]

1998 (3)

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

S. P. Pogossian, L. Vescan, and A. Vonsovici, “Single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851-1853 (1998).
[CrossRef]

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

1997 (1)

E. Kim, X. M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three imensional structures on surface of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

1996 (1)

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
[CrossRef]

1994 (1)

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771-1776 (1994).
[CrossRef]

1993 (1)

A. Neyer, T. Knoche, and L. Muller, “Fabrication of low-loss polymer waveguides using injection-molding technology,” Electron. Lett. 29, 399-401 (1993).
[CrossRef]

1991 (2)

P. R. Ashley and T. A. Tumolillo, Jr., “Channel waveguides in electro-optic polymers using a photopolymer cladding technique,” Appl. Phys. Lett. 58, 884-886 (1991).
[CrossRef]

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Aguirregabiria, M.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Ahn, J.-H.

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

Ahn, S.-H.

C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
[CrossRef]

Aranburu, I.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Arroyo, M. T.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Ashley, P. R.

P. R. Ashley and T. A. Tumolillo, Jr., “Channel waveguides in electro-optic polymers using a photopolymer cladding technique,” Appl. Phys. Lett. 58, 884-886 (1991).
[CrossRef]

Austin, M. W.

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
[CrossRef]

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

Balkunje, V. S.

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
[CrossRef]

Berganzo, J.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Bettiol, A. A.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

Blanco, F. J.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Chang, C.-P.

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

Chen, H.-L.

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

Cheng, C.-C.

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

Choi, C.-G.

C.-G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14, 945-949 (2004).
[CrossRef]

C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Eldada, L.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
[CrossRef]

Elizalde, J.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Esinenco, D.

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).

Farris, R. J.

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng. 13, 80-88 (2003).
[CrossRef]

Feng, R.

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng. 13, 80-88 (2003).
[CrossRef]

Han, S. G.

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

Han, S. P.

C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
[CrossRef]

Holland, A. S.

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
[CrossRef]

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

Hsieh, C. I.

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

Hsu, W.-H.

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

Huang, C.-S.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Jeong, M.-Y.

C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
[CrossRef]

Jian, L.

Z.-G. Ling, K. Lian, and L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” Proc. SPIE 3999, 1019-1027 (2000).
[CrossRef]

Kang, J.-W.

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277-1279 (2003).
[CrossRef]

Kim, B. C.

C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
[CrossRef]

Kim, E.

E. Kim, X. M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three imensional structures on surface of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Kim, H.-G.

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

Kim, J.-J.

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277-1279 (2003).
[CrossRef]

Kim, J.-S.

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277-1279 (2003).
[CrossRef]

Knoche, T.

A. Neyer, T. Knoche, and L. Muller, “Fabrication of low-loss polymer waveguides using injection-molding technology,” Electron. Lett. 29, 399-401 (1993).
[CrossRef]

Kostovski, G.

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

Kusko, M.

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).

Lee, H. J.

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

Lee, M. H.

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

Lian, K.

Z.-G. Ling, K. Lian, and L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” Proc. SPIE 3999, 1019-1027 (2000).
[CrossRef]

Ling, Z.-G.

Z.-G. Ling, K. Lian, and L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” Proc. SPIE 3999, 1019-1027 (2000).
[CrossRef]

Liu, C.-S.

Liul, P.-T.

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

Mayora, K.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Mitchell, A.

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
[CrossRef]

Mukund, K.

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

Muller, L.

A. Neyer, T. Knoche, and L. Muller, “Fabrication of low-loss polymer waveguides using injection-molding technology,” Electron. Lett. 29, 399-401 (1993).
[CrossRef]

Muller, R.

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).

Neyer, A.

A. Neyer, T. Knoche, and L. Muller, “Fabrication of low-loss polymer waveguides using injection-molding technology,” Electron. Lett. 29, 399-401 (1993).
[CrossRef]

Oh, M.-C.

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

Panergo, R.

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Pogossian, S. P.

Powell, O.

Psoma, S. D.

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).

Pun, E. Y. B.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110-2012 (2001).
[CrossRef]

Raghunathan, M. K.

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
[CrossRef]

Reed, G. T.

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771-1776 (1994).
[CrossRef]

Reinhall, P. G.

Rickman, A. G.

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771-1776 (1994).
[CrossRef]

Ruano-Lopez, J. M.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Schneider, A.

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).

Shacklette, L. W.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Stengel, K. M. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
[CrossRef]

Sum, T. C.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

Tijero, M.

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Tumolillo, T. A.

P. R. Ashley and T. A. Tumolillo, Jr., “Channel waveguides in electro-optic polymers using a photopolymer cladding technique,” Appl. Phys. Lett. 58, 884-886 (1991).
[CrossRef]

Tung, K. K.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

Van Kan, J. A.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

Vescan, L.

Vonsovici, A.

Wang, W.-C.

Wang, W.-S.

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

Watt, F.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

Whitesides, G.

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

E. Kim, X. M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three imensional structures on surface of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Wong, W. H.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110-2012 (2001).
[CrossRef]

Xia, Y.

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

Xu, C.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
[CrossRef]

Zhao, X. M.

E. Kim, X. M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three imensional structures on surface of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Zhou, J.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110-2012 (2001).
[CrossRef]

Adv. Mater. (2)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing and devices,” Adv. Mater. 14, 1339-1365 (2002).
[CrossRef]

E. Kim, X. M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three imensional structures on surface of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

Y. Xia and G. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153-184 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

P. R. Ashley and T. A. Tumolillo, Jr., “Channel waveguides in electro-optic polymers using a photopolymer cladding technique,” Appl. Phys. Lett. 58, 884-886 (1991).
[CrossRef]

M.-C. Oh, H. J. Lee, M. H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707-1709 (2003).
[CrossRef]

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Low-loss polymeric optical waveguides using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110-2012 (2001).
[CrossRef]

Electron. Lett. (1)

A. Neyer, T. Knoche, and L. Muller, “Fabrication of low-loss polymer waveguides using injection-molding technology,” Electron. Lett. 29, 399-401 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

C.-G. Choi, S. P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1-16 optical power splitters in polymers using hot-embossing process,” IEEE Photonics Technol. Lett. 15, 825-827 (2003).
[CrossRef]

J. Lightwave Technol. (5)

S. P. Pogossian, L. Vescan, and A. Vonsovici, “Single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851-1853 (1998).
[CrossRef]

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single mode raised rib waveguiding devices in polymers,” J. Lightwave Technol. 14, 1704-1712 (1996).
[CrossRef]

O. Powell, “Single mode condition for silicon rib waveguide,” J. Lightwave Technol. 20, 1851-1855 (2002).
[CrossRef]

A. G. Rickman and G. T. Reed, “Silicon-on-insulator optical rib waveguide loss and mode characteristics,” J. Lightwave Technol. 12, 1771-1776 (1994).
[CrossRef]

R. Panergo, C.-S. Huang, C.-S. Liu, P. G. Reinhall, and W.-C. Wang, “Resonant polymeric waveguide cantilever integrated for optical scanning,” J. Lightwave Technol. 25, 850-860(2007).
[CrossRef]

J. Micromech. Microeng. (2)

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng. 13, 80-88 (2003).
[CrossRef]

C.-G. Choi, “Fabrication of optical waveguides in thermosetting polymers using hot embossing,” J. Micromech. Microeng. 14, 945-949 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H.-L. Chen, C. I. Hsieh, C.-C. Cheng, C.-P. Chang, W.-H. Hsu, W.-S. Wang, and P.-T. Liul, “Porous materials with ultralow optical constants for integrated optical device applications,” Jpn. J. Appl. Phys. 44, 5673-5676 (2005).
[CrossRef]

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277-1279 (2003).
[CrossRef]

Proc. SPIE (3)

Z.-G. Ling, K. Lian, and L. Jian, “Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,” Proc. SPIE 3999, 1019-1027 (2000).
[CrossRef]

A. S. Holland, A. Mitchell, V. S. Balkunje, M. W. Austin, and M. K. Raghunathan, “Fabrication of raised and inverted SU8 polymer waveguides,” Proc. SPIE 5644, 353-365 (2005).
[CrossRef]

A. S. Holland, V. S. Balkunje, A. Mitchell, M. W. Austin, M. K. Raghunathan, K. Mukund, and G. Kostovski, “Effects of design geometry on SU8 polymer waveguides,” Proc. SPIE 5649, 186-194 (2005).
[CrossRef]

Rev. Adv. Mater. Sci. (1)

D. Esinenco, S. D. Psoma, M. Kusko, A. Schneider, and R. Muller, “SU-8 micro-biosensor based on Mach-Zehnder interferometer,” Rev. Adv. Mater. Sci. 10, 295-299 (2005).

Sens. Actuators B Chem. (1)

J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU8 process to integrate buried waveguides and sealed microchannels for Lab-on-a-Chip,” Sens. Actuators B Chem. 114, 542-551 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the proposed SU8 rib waveguide structure.

Fig. 2
Fig. 2

Processing flow: (a) fabrication of AZ4620 master and PDMS stamp, (b) placed wetted PDSM on top of a SU8 5 film, (c) removing a SU8 5 from the PDMS stamp, and (d) color code identifying the materials used.

Fig. 3
Fig. 3

Cross sections of two AZ4620 masters with dimensions in micrometers: (a) AZ4620 Sample 1 and (b) AZ4620 Sample 2. Here top width, bottom width, and ridge height are denoted as top, bottom, and ridge, respectively.

Fig. 4
Fig. 4

(a) PDMS stamp from AZ4620 Sample 1 and (b) an SEM image of the PDMS waveguide stamp.

Fig. 5
Fig. 5

SEM micrographs: (a) the SU8 5 waveguide formed after SAMIM and (b) a cross section of a single-mode rib SU8 5 waveguide.

Fig. 6
Fig. 6

(a) Method 1: the stamp was placed directly on top of film and (b) Method 2: the stamp was pushed against one end of the SU8 and then slowly lowered until it reached the other end.

Fig. 7
Fig. 7

Experiment results from varying (a) prebake time, (b) molding temperature, (c) added weight, (d) amounts of solvent using the method described in Fig. 6b, and (e) amounts of solvent using the method described in Fig. 6a.

Fig. 8
Fig. 8

Experimental result using (a) Stamp 1 and (b) using Stamp 2. Solid pattern: results corresponding to the method shown in Fig. 6a. Hollow pattern: results corresponding to the method shown in Fig. 6b.

Fig. 9
Fig. 9

(a) Solvent softens the SU8, and the weight of the stamp pushes the softened SU8 into the cavity. (b) The solvent dissipates through the stamp into the air.

Fig. 10
Fig. 10

Absorption spectrum of SU8 film.

Fig. 11
Fig. 11

BPM simulation results showing the field distribution at z = 0 , 100, and 300 μm (top to bottom in the left column) and at z = 500 , 1000, and 4000 μm (top to bottom in the right column). Here the propagation direction is in z direction. x and y are not in a correct scale.

Fig. 12
Fig. 12

Microscope image of the 1.55 μm light output with the sketch of the rib waveguide cross section.

Tables (1)

Tables Icon

Table 1 The Spin Speed of SU8 Film, the Corresponding Film Thickness, the Dimensions of the SU8 Rib Waveguide after the SAMIM Process, the Ratio of Ridge-to-Total-Height (r), and the Propagation Condition a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H λ n f 2 n s 2 1 ,
0.5 h H < 1 ,
W H c + r 1 r 2 ,

Metrics