Abstract

Yb-doped fibers are widely used in applications requiring high average output powers and high power pulse amplification. Photodarkening of the Yb-doped silicate glass core potentially limits the lifetime or efficiency of such fiber devices. In many studies of photodarkening, two principal methods of controllably inducing an inversion are used, namely, cladding pumping and core pumping of the sample. We present simulation results describing the key differences in the inversion profiles of samples of different physical parameters in these two cases, and we discuss the problems and possibilities that arise in benchmarking fibers of various physical parameters. Based on the simulation and experimental work, we propose guidelines for photodarkening benchmarking measurements and show examples of measurements made within and outside of the guidelines.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maryashin, A. Unt, and V. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
    [Crossref]
  2. S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
    [Crossref]
  3. A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
    [Crossref]
  4. M. Kauf, R. Patel, J. Bovatsek, and W. Gries, “High power UV Q-switched and mode-locked laser comparisons for industrial processing applications,” Proc. SPIE 6871, 687123 (2008).
    [Crossref]
  5. D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
    [Crossref]
  6. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
    [Crossref]
  7. K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.
  8. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 1411539-11544 (2006).
    [Crossref] [PubMed]
  9. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
    [Crossref] [PubMed]
  10. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32, 1626-1628 (2007).
    [Crossref] [PubMed]
  11. A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977 nm and 543 nm irradiation,” Laser Phys. Lett. 4(10), 734-739 (2007).
    [Crossref]
  12. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32, 3352-3354(2007).
    [Crossref] [PubMed]
  13. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper CTuQ5.
  14. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15, 1606(2007).
    [Crossref] [PubMed]
  15. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838-14843 (2007).
    [Crossref] [PubMed]
  16. T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.
  17. A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.
  18. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 6453E-1-11 (2007).
  19. R. L. Farrow, S. W. Moore, P. E. Schrader, and A. V. Smith, “Numerical simulations of Yb3+-doped, pulsed fiber amplifiers: comparison with experiment,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2008), paper CThL6.
  20. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311-320 (1976).
    [Crossref]
  21. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991), pp. 328-329.
  22. M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
    [Crossref]

2008 (4)

A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
[Crossref]

M. Kauf, R. Patel, J. Bovatsek, and W. Gries, “High power UV Q-switched and mode-locked laser comparisons for industrial processing applications,” Proc. SPIE 6871, 687123 (2008).
[Crossref]

R. L. Farrow, S. W. Moore, P. E. Schrader, and A. V. Smith, “Numerical simulations of Yb3+-doped, pulsed fiber amplifiers: comparison with experiment,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2008), paper CThL6.

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
[Crossref] [PubMed]

2007 (8)

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 6453E-1-11 (2007).

I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15, 1606(2007).
[Crossref] [PubMed]

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32, 1626-1628 (2007).
[Crossref] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838-14843 (2007).
[Crossref] [PubMed]

M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32, 3352-3354(2007).
[Crossref] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977 nm and 543 nm irradiation,” Laser Phys. Lett. 4(10), 734-739 (2007).
[Crossref]

2006 (5)

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper CTuQ5.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

S. Maryashin, A. Unt, and V. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[Crossref]

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 1411539-11544 (2006).
[Crossref] [PubMed]

2002 (1)

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[Crossref]

1997 (1)

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

1991 (1)

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991), pp. 328-329.

1976 (1)

Åberg, D.

Andrejco, M.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper CTuQ5.

Appleyard, A.

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

Barmenkov, Yu. O.

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977 nm and 543 nm irradiation,” Laser Phys. Lett. 4(10), 734-739 (2007).
[Crossref]

Basu, C.

Bello Doua, R.

Boullet, J.

Bovatsek, J.

M. Kauf, R. Patel, J. Bovatsek, and W. Gries, “High power UV Q-switched and mode-locked laser comparisons for industrial processing applications,” Proc. SPIE 6871, 687123 (2008).
[Crossref]

Boyland, A. J.

Bufetov, I. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

Cardinal, T.

Changkakoti, R.

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.

Cheng, M. Y.

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.

Crowe, I.

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

Di Teodoro, F.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[Crossref]

Dianov, E. M.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

DiGiovanni, D.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper CTuQ5.

Dudley, D.

A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
[Crossref]

Eidam, T.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

Engholm, M.

Engin, D.

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.

Ermeneux, S.

Farrow, R. L.

R. L. Farrow, S. W. Moore, P. E. Schrader, and A. V. Smith, “Numerical simulations of Yb3+-doped, pulsed fiber amplifiers: comparison with experiment,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2008), paper CThL6.

Galvanuaskas, A.

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.

Gapontsev, V.

S. Maryashin, A. Unt, and V. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[Crossref]

Gries, W.

M. Kauf, R. Patel, J. Bovatsek, and W. Gries, “High power UV Q-switched and mode-locked laser comparisons for industrial processing applications,” Proc. SPIE 6871, 687123 (2008).
[Crossref]

Grolmus, E.

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

Guillen, F.

Guzman Chávez, A. D.

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977 nm and 543 nm irradiation,” Laser Phys. Lett. 4(10), 734-739 (2007).
[Crossref]

Himeno, K.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

Hodgson, N.

A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
[Crossref]

Hoffman, H. J.

Hotoleanu, M.

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
[Crossref] [PubMed]

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

Hou, K. C.

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.

Ikeda, M.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

Il'ichev, N. N.

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977 nm and 543 nm irradiation,” Laser Phys. Lett. 4(10), 734-739 (2007).
[Crossref]

Jarabo, S.

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

Jasapara, J.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper CTuQ5.

Jetschke, S.

Juanart, E.

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

Karasek, M.

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

Kauf, M.

M. Kauf, R. Patel, J. Bovatsek, and W. Gries, “High power UV Q-switched and mode-locked laser comparisons for industrial processing applications,” Proc. SPIE 6871, 687123 (2008).
[Crossref]

Kirchhof, J.

Kir'yanov, A. V.

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977 nm and 543 nm irradiation,” Laser Phys. Lett. 4(10), 734-739 (2007).
[Crossref]

Kitabayashi, T.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

Kliner, D. A. V.

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
[Crossref] [PubMed]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 6453E-1-11 (2007).

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[Crossref]

Koplow, J. P.

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
[Crossref] [PubMed]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 6453E-1-11 (2007).

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[Crossref]

Koponen, J.

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
[Crossref] [PubMed]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 6453E-1-11 (2007).

Koponen, J. J.

Limpert, J.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

Mamidipudi, P.

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.

Manek-Hönninger, I.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991), pp. 328-329.

D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311-320 (1976).
[Crossref]

Maryashin, S.

S. Maryashin, A. Unt, and V. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[Crossref]

McLean, S.

A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
[Crossref]

Melkumov, M. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

Moore, S. W.

R. L. Farrow, S. W. Moore, P. E. Schrader, and A. V. Smith, “Numerical simulations of Yb3+-doped, pulsed fiber amplifiers: comparison with experiment,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2008), paper CThL6.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[Crossref]

Nakai, M.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

Nilsson, J.

Norin, L.

Norman, S.

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

Ohashi, K.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

Patel, R.

M. Kauf, R. Patel, J. Bovatsek, and W. Gries, “High power UV Q-switched and mode-locked laser comparisons for industrial processing applications,” Proc. SPIE 6871, 687123 (2008).
[Crossref]

Payne, D.

Podgorski, M.

Rebolledo, M. A.

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

Röpke, U.

Röser, F.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

Rothhardt, J.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

Sahu, J. K.

Sakai, T.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

Salin, F.

Schimpf, D. N.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

Schmidt, O.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

Schrader, P. E.

R. L. Farrow, S. W. Moore, P. E. Schrader, and A. V. Smith, “Numerical simulations of Yb3+-doped, pulsed fiber amplifiers: comparison with experiment,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2008), paper CThL6.

Shubin, A. V.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

Skull, P.

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

Smirnov, S. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

Smith, A. V.

R. L. Farrow, S. W. Moore, P. E. Schrader, and A. V. Smith, “Numerical simulations of Yb3+-doped, pulsed fiber amplifiers: comparison with experiment,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2008), paper CThL6.

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[Crossref]

Söderlund, M.

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47, 1247-1256 (2008).
[Crossref] [PubMed]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 6453E-1-11 (2007).

Söderlund, M. J.

Sones, C.

Starodoumov, A. N.

A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
[Crossref]

Steinmetz, A.

A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
[Crossref]

Tammela, S. K. T.

Tünnermann, A.

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 24, 3495-3497 (2007).
[Crossref]

Turner, P.

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

Unger, S.

Unt, A.

S. Maryashin, A. Unt, and V. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[Crossref]

Walker, D.

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

Windeler, R.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper CTuQ5.

Yashkov, M. V.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

Yoo, S.

Zervas, M.

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Laser Phys. Lett. (1)

A. D. Guzman Chávez, A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, “Reversible photo-darkening and resonant photobleaching of ytterbium-doped silica fiber at in-core 977 nm and 543 nm irradiation,” Laser Phys. Lett. 4(10), 734-739 (2007).
[Crossref]

Opt. Commun. (1)

D. A. V. Kliner, F. Di Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210, 393-398 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (5)

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. V. Kliner, and J. P. Koplow, “Photodarkening measurements in large mode area fibers,” Proc. SPIE 6453, 6453E-1-11 (2007).

S. Maryashin, A. Unt, and V. Gapontsev, “10 mJ pulse energy and 200 W average power Yb-doped fiber laser,” Proc. SPIE 6102, 61020O (2006).
[Crossref]

S. Norman, M. Zervas, A. Appleyard, P. Skull, D. Walker, P. Turner, and I. Crowe, “Power scaling of high power fiber lasers for micromachining and materials processing applications,” Proc. SPIE 6102, 61021 (2006).
[Crossref]

A. N. Starodoumov; D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson, “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V (2008).
[Crossref]

M. Kauf, R. Patel, J. Bovatsek, and W. Gries, “High power UV Q-switched and mode-locked laser comparisons for industrial processing applications,” Proc. SPIE 6871, 687123 (2008).
[Crossref]

Pure Appl. Opt. (1)

M. A. Rebolledo, S. Jarabo, M. Hotoleanu, M. Karasek, E. Grolmus, and E. Juanart, “Analysis of a technique to determine absolute values of the stimulated emission cross section in erbium-doped silica fibres from gain measurements,” Pure Appl. Opt. 6, 425-433 (1997).
[Crossref]

Other (6)

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper CTuQ5.

T. Kitabayashi, M. Ikeda, M. Nakai, T. Sakai, K. Himeno, and K. Ohashi, “Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2006), paper OThC5.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in Conference of Lasers and Electro-Optics / Europe CLEO/Europe Technical Digest (Optical Society of America, 2007), paper CJ3-1-THU.

R. L. Farrow, S. W. Moore, P. E. Schrader, and A. V. Smith, “Numerical simulations of Yb3+-doped, pulsed fiber amplifiers: comparison with experiment,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (Optical Society of America, 2008), paper CThL6.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991), pp. 328-329.

K. C. Hou, M. Y. Cheng, D. Engin, R. Changkakoti, P. Mamidipudi, and A. Galvanuaskas, “Multi MW peak power scaling of single-mode pulses using 80 ?m core Yb-doped LMA fibers,” presented at the Directed Energy Professional Society 19th Solid State and Diode Laser Technology Review Conference, Albuquerque, New Mexico, 13-15 June 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Core-pumping method for benchmarking. Single-mode pump laser diode is coupled to the sample fiber using a wavelength division multiplexer (WDM). Either a probe laser, for example, He–Ne, or a white-light source (WLS) can be used to measure the transmission of the sample before, after, or during PD using the powermeter or the spectrum analyzer, respectively. Sample can be, for example, fusion spliced to the setup from each end. (b) Cladding-pumping method uses a multimode combiner (MMC, for example, a 6 + 1 to 1 tapered fiber device) to couple light from multimode laser diodes to the sample fiber. The probe laser or other light source can be coupled to the core of the sample fiber by using a multimode combiner equipped with a signal fiber. Pump propagates in the cladding of the sample fiber.

Fig. 2
Fig. 2

Absorption and emission cross sections used in the simulations. Based on measurements made from aluminosilicate fibers.

Fig. 3
Fig. 3

Average inversion and standard deviation of the inversion versus pump power for a core-pumped, Yb-doped fiber. The inversion of the sample saturates, i.e., additional pump power no longer significantly increases the inversion. The saturated inversion level is mainly defined by the ratio of absorption and emission cross sections.

Fig. 4
Fig. 4

Simulated average inversion of a 4 μm core diameter fiber samples core pumped with 250 mW of pump power. Each data point represents a fiber sample of certain length. Inversion is the average over the volume of the sample. The average inversion of a sample is mainly defined by the ratio of absorption/emission cross sections. The inversion of each sample is flat excluding the points at the 920 nm long sample’s corner, where the average inversion is seen to decrease.

Fig. 5
Fig. 5

Pump powers required to saturate a 10 cm sample by core pumping to different core diameters. The error ranges represent the uncertainty due to the pump power step between each simulated data point. The dashed irradiance lines are fit to the simulation results.

Fig. 6
Fig. 6

Average inversion and standard deviation of the inversion versus pump power for a cladding-pumped, Yb-doped fiber with a 20 μm core diameter and 400 μm cladding diameter. The inversion does not have a practical threshold level after which the inversion is saturated, but rather the inversion is tunable and very flat over a range of pump power. The inversion level is mainly defined by the absorption cross section and the pump power.

Fig. 7
Fig. 7

Simulated average inversion of a 20 μm core diameter sample cladding pumped to 400 μm cladding with 5 W of pump power. Each data point represents a fiber sample of certain length. Inversion is the average over the volume of the sample. The inversion of cladding pumped samples is mainly defined by the absorption cross section, as the irradiance of the pump is more than an order of magnitude lower than in typical core-pumping case.

Fig. 8
Fig. 8

Measured normalized probe transmission in a core pumped setup with varying pump powers. The pump wavelength was 974 nm , and the probe wavelength was 633 nm . The sample length is too long to achieve inversion saturation, and the rate and degree of PD after the observed time period are dependent on the pump power. Inset: simulated inversion profiles for each pump power at 974 nm .

Fig. 9
Fig. 9

Measured normalized probe transmission in a core-pumped setup with varying pump powers. The pump wavelength was 974 nm , and the probe wavelength was 633 nm . The inversion is saturated, and the degree of PD and the rate of PD are not dependent on the applied pump power after the observed time period. Inset: simulated inversion profiles for each pump power at 974 nm (data points overlap).

Fig. 10
Fig. 10

Measured normalized probe transmission in cladding pumped samples with varying lengths. The pump wavelength was 976 ± 2 nm , and the probe wavelength was 795 ± 10 nm . To make signals comparable, they were normalized with the sample length. Two measurements were done for each length (shown as line, dotted line). Inset: simulated inversion profiles for each fiber length. The simulation data shows the depletion of inversion due to ASE at the input and output of the long sample fibers.

Metrics