Abstract

Yb-doped fibers are widely used in applications requiring high average output powers and high power pulse amplification. Photodarkening of the Yb-doped silicate glass core potentially limits the lifetime or efficiency of such fiber devices. In many studies of photodarkening, two principal methods of controllably inducing an inversion are used, namely, cladding pumping and core pumping of the sample. We present simulation results describing the key differences in the inversion profiles of samples of different physical parameters in these two cases, and we discuss the problems and possibilities that arise in benchmarking fibers of various physical parameters. Based on the simulation and experimental work, we propose guidelines for photodarkening benchmarking measurements and show examples of measurements made within and outside of the guidelines.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photodarkening rate in Yb-doped silica fibers

Joona Koponen, Mikko Söderlund, Hanna J. Hoffman, Dahv A. V. Kliner, Jeffrey P. Koplow, and Mircea Hotoleanu
Appl. Opt. 47(9) 1247-1256 (2008)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

Comparison of amplification in large area fibers using cladding-pump and fundamental-mode core-pump schemes

Z. Várallyay and J. C. Jasapara
Opt. Express 17(20) 17242-17252 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription