Abstract

To apply digital holography to the measurement of three-dimensional dense particle fields in large facilities, we have developed a hybrid digital holographic particle-imaging system. The technique combines the advantages of off-axis (side) scattering in suppressing speckle noise and on-axis (in-line) recording in lowering the digital sensor resolution requirement. A camera lens is attached to the digital sensor to compensate for the weak object wave from side scattering over a large recording distance. A simple numerical reconstruction algorithm is developed for holograms recorded with a lens without requiring complex and impractical mathematical corrections. We analyze the effect of image sensor resolution and off-axis angle on system performance and quantify the particle positioning accuracy of the system. The holographic system is successfully applied to the study of inertial particle clustering in isotropic turbulence.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for high-resolution particle-image velocimetry,” Appl. Opt. 33, 7159-7170 (1994).
    [CrossRef] [PubMed]
  2. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697-7708 (2005).
    [CrossRef] [PubMed]
  3. B. Tao, J. Katz, and C. Meneveau, “Holographic PIV measurements of the structure of SGS stress eigenvectors and their alignment relative to parameters based on the filtered velocity gradients,” J. Fluid Mech. 457, 35-78 (2002).
    [CrossRef]
  4. J. Sheng, E. Malkiel, and J. Katz, “Single beam two-views holographic particle image velocimetry,” Appl. Opt. 42, 235-250(2003).
    [CrossRef] [PubMed]
  5. S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
    [CrossRef]
  6. R. B. Owen, A. A. Zozulya, M. R. Benoit, and D. M. Klaus, “Microgravity materials and life sciences research applications of digital holography,” Appl. Opt. 41, 3927-3935 (2002).
    [CrossRef] [PubMed]
  7. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
    [CrossRef]
  8. J. Sheng, E. Malkiel, and J. Katz. “A digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45 (16), 3893-3901 (2006).
    [CrossRef] [PubMed]
  9. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301-11305 (2001).
    [CrossRef] [PubMed]
  10. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827-833 (2003).
    [CrossRef] [PubMed]
  11. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
    [CrossRef]
  12. R. W. Meier, “Magnification and third-order aberrations in holography,” J. Opt. Soc. Am. 55, 987-992 (1965).
  13. J. de Jong and H. Meng, “Digital holographic particle validation via complex wave,” Appl. Opt. 46, 7652-7661 (2007).
    [CrossRef] [PubMed]
  14. W. Yang, A. B. Kostinski, and R. A. Shaw, “Phase signature for particle detection with digital inline holography,” Opt. Lett. 31, 1399-1401 (2006).
    [CrossRef] [PubMed]
  15. S. Sundaram and L. R. Collins, “Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations,” J. Fluid Mech. 335, 75-109 (1997).
    [CrossRef]
  16. J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
    [CrossRef]

2008

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

2007

2006

2005

2004

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

2003

2002

B. Tao, J. Katz, and C. Meneveau, “Holographic PIV measurements of the structure of SGS stress eigenvectors and their alignment relative to parameters based on the filtered velocity gradients,” J. Fluid Mech. 457, 35-78 (2002).
[CrossRef]

R. B. Owen, A. A. Zozulya, M. R. Benoit, and D. M. Klaus, “Microgravity materials and life sciences research applications of digital holography,” Appl. Opt. 41, 3927-3935 (2002).
[CrossRef] [PubMed]

2001

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

1997

S. Sundaram and L. R. Collins, “Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations,” J. Fluid Mech. 335, 75-109 (1997).
[CrossRef]

1994

1965

Adrian, R. J.

Barnhart, D. H.

Benoit, M. R.

Cao, L.

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

Collins, L.

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

Collins, L. R.

S. Sundaram and L. R. Collins, “Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations,” J. Fluid Mech. 335, 75-109 (1997).
[CrossRef]

Coppola, G.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

de Jong, J.

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

J. de Jong and H. Meng, “Digital holographic particle validation via complex wave,” Appl. Opt. 46, 7652-7661 (2007).
[CrossRef] [PubMed]

De Nicola, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Ferraro, P.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Finizio, A.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Grilli, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Ito, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Kanamori, H.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Katz, J.

Klaus, D. M.

Kostinski, A. B.

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Kunugi, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Malkiel, E.

Meier, R. W.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Meneveau, C.

B. Tao, J. Katz, and C. Meneveau, “Holographic PIV measurements of the structure of SGS stress eigenvectors and their alignment relative to parameters based on the filtered velocity gradients,” J. Fluid Mech. 457, 35-78 (2002).
[CrossRef]

Meng, H.

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

J. de Jong and H. Meng, “Digital holographic particle validation via complex wave,” Appl. Opt. 46, 7652-7661 (2007).
[CrossRef] [PubMed]

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697-7708 (2005).
[CrossRef] [PubMed]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827-833 (2003).
[CrossRef] [PubMed]

Owen, R. B.

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827-833 (2003).
[CrossRef] [PubMed]

Papen, G. C.

Pu, Y.

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697-7708 (2005).
[CrossRef] [PubMed]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

Salazar, J.

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

Satake, S.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Sato, K.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Shaw, R. A.

Sheng, J.

Sundaram, S.

S. Sundaram and L. R. Collins, “Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations,” J. Fluid Mech. 335, 75-109 (1997).
[CrossRef]

Taniguchi, J.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Tao, B.

B. Tao, J. Katz, and C. Meneveau, “Holographic PIV measurements of the structure of SGS stress eigenvectors and their alignment relative to parameters based on the filtered velocity gradients,” J. Fluid Mech. 457, 35-78 (2002).
[CrossRef]

Woodward, S.

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Yang, W.

Zozulya, A. A.

Appl. Opt.

J. Fluid Mech.

S. Sundaram and L. R. Collins, “Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations,” J. Fluid Mech. 335, 75-109 (1997).
[CrossRef]

J. Salazar, J. de Jong, L. Cao, S. Woodward, H. Meng, and L. Collins, “Experimental and numerical investigation of inertial particle clustering in isotropic turbulence,” J. Fluid Mech. 600, 245-256 (2008).
[CrossRef]

B. Tao, J. Katz, and C. Meneveau, “Holographic PIV measurements of the structure of SGS stress eigenvectors and their alignment relative to parameters based on the filtered velocity gradients,” J. Fluid Mech. 457, 35-78 (2002).
[CrossRef]

J. Opt. Soc. Am.

Meas. Sci. Technol.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Opt. Lett.

Proc. Natl. Acad. Sci.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical setup for hybrid holographic recording system.

Fig. 2
Fig. 2

Schematic of lens-based hologram recording setup.

Fig. 3
Fig. 3

Line profiles of simulated holograms at different image sensor resolutions: (a) forward scattering, (b) side scattering.

Fig. 4
Fig. 4

Holograms recorded at different resolutions and the corresponding reconstructed particle images.

Fig. 5
Fig. 5

Holograms recorded by the hybrid system at three different off-axis angles.

Fig. 6
Fig. 6

Particle 3D images reconstructed from the holograms recorded at two different off-axis angles.

Fig. 7
Fig. 7

Particle depth accuracy decreases as the off-axis angle increases at the same recording resolution.

Fig. 8
Fig. 8

(a) Measured particle distribution relative to the virtual plane representing the flat plate. (b) Measured particle depth positions relative to the true depth position defined by the tilted flat plate. (c) Distribution of particle depth position error.

Fig. 9
Fig. 9

(a) A snapshot of particle 3D distribution in isotropic turbulence. (b) Particle radial distribution function obtained from over 300,000 particle pairs.

Tables (1)

Tables Icon

Table 1 List of Symbols

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y , z ) = 1 j λ H ( ξ , ψ ) R ( ξ , ψ ) exp ( j k ρ ) l cos θ d ξ d ψ ,
1 / z g + 1 / z h = 1 / F , 1 / ( z g + z p ) + 1 / ( z h z l ) = 1 / F , 1 / z l 1 / z i = 1 / ( z l F ) ,
z p z i = ( z g z h ) 2 = M 2 , x p x i = z g z h = M , y p y i = z g z h = M ,
α max = sin 1 ( λ / 2 Δ H / 2 z ) .

Metrics