Abstract

Holographic data pages were multiplexed in different thickness layers of a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photopolymers, which are considered interesting materials for recording holographic memories. A liquid crystal device was used to modify the object beam and store the data pages. A peristrophic multiplexing method is used to store a large number of data pages in the same spot in the material. The bit error rate was calculated fitting the histograms of the images to determine what parameters improve the quality of the images.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
    [CrossRef] [PubMed]
  2. M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
    [CrossRef]
  3. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005).
    [CrossRef] [PubMed]
  4. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  5. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006).
    [CrossRef] [PubMed]
  6. R. K. Banyal and R. Prasad, “Holographic recording in Fe:Ce:Ti doped LiNbO3 crystal,” Opt. Commun. 274, 300-306(2007).
    [CrossRef]
  7. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage greater than 100 bits/?m2,” Proc SPIE 5216, 10-25 (2003).
    [CrossRef]
  8. W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
    [CrossRef]
  9. O. Graydon, “Holographic storage turns blue,” Opt. Laser Europe 125, 7 (2005).
  10. S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
    [CrossRef]
  11. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
    [CrossRef] [PubMed]
  12. E. Fernández, C. García, M. Ortuño, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
    [CrossRef] [PubMed]
  13. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
    [CrossRef] [PubMed]
  14. K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, “Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
    [CrossRef]
  15. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
    [CrossRef]
  16. M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
    [CrossRef]
  17. K. Lu and B. E. A. Saleh, “Theory and design of the liquid-crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
    [CrossRef]
  18. M. Yamauchi and T. Eiju, “Optimization of twisted-nematic liquid-crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19-25 (1995).
    [CrossRef]
  19. A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
    [CrossRef]
  20. A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
    [CrossRef]
  21. H. Kim and Y. H. Lee, “Unique measurement of the parameters of a twisted-nematic liquid-crystal display,” Appl. Opt. 44, 1642-1649 (2005).
    [CrossRef] [PubMed]
  22. V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005).
    [CrossRef]
  23. J. Jang and D. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797-1799 (2001).
    [CrossRef]
  24. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006).
    [CrossRef]
  25. E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).
  26. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  27. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710-1712 (1998).
    [CrossRef]
  28. M. Keskinoz and B. V. K. Vijaya Kumar, “Application of linear minimum mean-squared-error equalization for volume holographic data storage,” Appl. Opt. 38, 4387-4393 (1999).
    [CrossRef]
  29. P. Varhegyi, P. Koppa, F. Ujhelyi, and Lorincz, “System modeling and optimization of Fourier holographic memory,” Appl. Opt. 44, 3024-3031 (2005).
    [CrossRef] [PubMed]
  30. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
    [CrossRef]

2007 (3)

R. K. Banyal and R. Prasad, “Holographic recording in Fe:Ce:Ti doped LiNbO3 crystal,” Opt. Commun. 274, 300-306(2007).
[CrossRef]

E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (7)

O. Graydon, “Holographic storage turns blue,” Opt. Laser Europe 125, 7 (2005).

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005).
[CrossRef]

H. Kim and Y. H. Lee, “Unique measurement of the parameters of a twisted-nematic liquid-crystal display,” Appl. Opt. 44, 1642-1649 (2005).
[CrossRef] [PubMed]

P. Varhegyi, P. Koppa, F. Ujhelyi, and Lorincz, “System modeling and optimization of Fourier holographic memory,” Appl. Opt. 44, 3024-3031 (2005).
[CrossRef] [PubMed]

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (5)

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, “Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage greater than 100 bits/?m2,” Proc SPIE 5216, 10-25 (2003).
[CrossRef]

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

2001 (2)

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

J. Jang and D. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797-1799 (2001).
[CrossRef]

2000 (2)

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

1999 (1)

1998 (1)

1996 (2)

A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

1995 (1)

M. Yamauchi and T. Eiju, “Optimization of twisted-nematic liquid-crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19-25 (1995).
[CrossRef]

1990 (1)

K. Lu and B. E. A. Saleh, “Theory and design of the liquid-crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

Anderson, K. E.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Ayres, M.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Banyal, R. K.

R. K. Banyal and R. Prasad, “Holographic recording in Fe:Ce:Ti doped LiNbO3 crystal,” Opt. Commun. 274, 300-306(2007).
[CrossRef]

Belendez, A.

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

Beléndez, A.

E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef] [PubMed]

M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
[CrossRef]

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Bélendez, A.

Bergman, C.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Bjornson, E.

Boyd, C.

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage greater than 100 bits/?m2,” Proc SPIE 5216, 10-25 (2003).
[CrossRef]

Campbell, S.

Campos, J.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

Close, C. E.

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Curtis, K.

Curtis, K. R.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Daiber, A. J.

Davis, J. A.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

Dhar, L.

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710-1712 (1998).
[CrossRef]

Duran, V.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005).
[CrossRef]

Earhart, T.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Eiju, T.

M. Yamauchi and T. Eiju, “Optimization of twisted-nematic liquid-crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19-25 (1995).
[CrossRef]

Fernández, E.

Gallego, S.

E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef] [PubMed]

M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
[CrossRef]

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Garcia, C.

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

García, C.

Gleeson, M. R.

Graydon, O.

O. Graydon, “Holographic storage turns blue,” Opt. Laser Europe 125, 7 (2005).

Harris, A.

Hertrich, G.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Hesselink, L.

Hill, A.

Hirl, A.

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

Hirl, A. J.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Hsiao, Y.-N.

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, “Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, “Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Iemmi, C.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

Ihas, B.

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

Jang, J.

Jaroszewicz, Z.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005).
[CrossRef]

Kelly, J. V.

Keskinoz, M.

Kim, H.

Koppa, P.

Kwan, D.

Lancis, J.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005).
[CrossRef]

Lee, Y. H.

Levinos, N.

Lin, S. H.

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, “Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Loechel, W.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Lorincz,

Lu, K.

K. Lu and B. E. A. Saleh, “Theory and design of the liquid-crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

Malang, K.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Marquez, A.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

Márquez, A.

E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).

M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

Michaels, D.

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

Moreno, A.

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

Moreno, I.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

Neipp, C.

M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Okas, R.

O'Neill, F. T.

Orlov, S.

Ortuño, M.

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef] [PubMed]

E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Pane, M.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Pascual, I.

E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef] [PubMed]

M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
[CrossRef]

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “Three-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14, 5121-5128 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Pharris, K.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Phillips, W.

Prasad, R.

R. K. Banyal and R. Prasad, “Holographic recording in Fe:Ce:Ti doped LiNbO3 crystal,” Opt. Commun. 274, 300-306(2007).
[CrossRef]

Psaltis, D.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

Pu, A.

A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

Raguin, D. H.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage greater than 100 bits/?m2,” Proc SPIE 5216, 10-25 (2003).
[CrossRef]

Robert, A.

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

Robertson, T. L.

Saleh, B. E. A.

K. Lu and B. E. A. Saleh, “Theory and design of the liquid-crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

Schilling, M.

Schnoes, M.

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

Schomberger, G.

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

Setthachayanon, S.

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

Sheridan, J. T.

Shin, D.

Shuman, C.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Slagle, T.

Snyder, R.

Sochava, S. L.

Stanhope, C.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Sundaram, P.

Tackitt, M.

Tajahuerce, E.

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005).
[CrossRef]

Takashima, Y.

Tankitt, M. C.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Ujhelyi, F.

Varhegyi, P.

Vijaya Kumar, B. V. K.

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage greater than 100 bits/?m2,” Proc SPIE 5216, 10-25 (2003).
[CrossRef]

Wilson, W.

Wilson, W. L.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

Wolfgang, K.

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

Yamauchi, M.

M. Yamauchi and T. Eiju, “Optimization of twisted-nematic liquid-crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19-25 (1995).
[CrossRef]

Yzuel, M. J.

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

Appl. Opt. (9)

M. Keskinoz and B. V. K. Vijaya Kumar, “Application of linear minimum mean-squared-error equalization for volume holographic data storage,” Appl. Opt. 38, 4387-4393 (1999).
[CrossRef]

A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[CrossRef] [PubMed]

H. Kim and Y. H. Lee, “Unique measurement of the parameters of a twisted-nematic liquid-crystal display,” Appl. Opt. 44, 1642-1649 (2005).
[CrossRef] [PubMed]

P. Varhegyi, P. Koppa, F. Ujhelyi, and Lorincz, “System modeling and optimization of Fourier holographic memory,” Appl. Opt. 44, 3024-3031 (2005).
[CrossRef] [PubMed]

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Bélendez, and I. Pascual, “Characterization of polyvinyl alcohol acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef] [PubMed]

E. Fernández, C. García, M. Ortuño, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

J. Appl. Phys. (1)

V. Duran, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid-crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101/1-043101/6 (2005).
[CrossRef]

J. Mod. Opt. (1)

S. Gallego, M. Ortuño, C. Garcia, C. Neipp, A. Belendez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

R. K. Banyal and R. Prasad, “Holographic recording in Fe:Ce:Ti doped LiNbO3 crystal,” Opt. Commun. 274, 300-306(2007).
[CrossRef]

M. Yamauchi and T. Eiju, “Optimization of twisted-nematic liquid-crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19-25 (1995).
[CrossRef]

M. Ortuño, E. Fernández, A. Márquez, S. Gallego, C. Neipp, A. Beléndez, and I. Pascual, “Effect of the incorporation of N,N? methylene-bis-acrylamide on the multiplexing of holograms in a hydrophilic acrylamide photopolymer,” Opt. Commun. 268, 133-137 (2006).
[CrossRef]

Opt. Eng. (5)

K. Lu and B. E. A. Saleh, “Theory and design of the liquid-crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240-246 (1990).
[CrossRef]

A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twister-nematic liquid-crystal displays based on a simple physical model,” Opt. Eng. 40, 2558-2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, and A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301-3307 (2000).
[CrossRef]

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, “Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

Opt. Express (1)

Opt. Laser Europe (1)

O. Graydon, “Holographic storage turns blue,” Opt. Laser Europe 125, 7 (2005).

Opt. Lett. (2)

Proc SPIE (1)

D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage greater than 100 bits/?m2,” Proc SPIE 5216, 10-25 (2003).
[CrossRef]

Proc. SPIE (3)

W. L. Wilson, K. R. Curtis, K. E. Anderson, M. C. Tankitt, A. J. Hirl, M. Pane, C. Stanhope, T. Earhart, W. Loechel, C. Bergman, K. Wolfgang, C. Shuman, G. Hertrich, K. Pharris, K. Malang, and M. Ayres, “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” Proc. SPIE 5216, 178-191 (2003).
[CrossRef]

M. Schnoes, B. Ihas, A. Hirl, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic storage media for practical systems,” Proc. SPIE 5005, 29-37(2003).
[CrossRef]

E. Fernández, M. Ortuño, A. Márquez, S. Gallego, A. Beléndez, and I. Pascual, “Optimization of a holographic memory using an LCD and a PVA based photopolymer,” Proc. SPIE 6587, 65870J/1-65870J/9 (2007).

Other (1)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Experimental setup: BS, beam splitter; Mi, mirror; Li, lens; Di, diaphragm; SFi, microscope objective lens and pinhole; SLM, spatial light modulator; Pi, polarizer; CCD, charge coupled device.

Fig. 2
Fig. 2

Distribution of the probability of black and white pixels.

Fig. 3
Fig. 3

(Color online) BER of the objects with 300 × 300 pixels (solid circles), 400 × 400 pixels (empty circles), 500 × 500 pixels (solid squares), 800 × 800 pixels (empty squares), and exposure time (empty triangles) in a 80 μm thick material.

Fig. 4
Fig. 4

First and last holograms with a lower BER corresponding to objects with 300 × 300 pixels (a), (b), 400 × 400 pixels (c), (d), 500 × 500 pixels (e), (f), and 800 × 600 pixels (g), (h) in a 80 μm thick layer.

Fig. 5
Fig. 5

(Color online) BER of the objects with 300 × 300 pixels (solid circles), 400 × 400 pixels (empty circles), 500 × 500 pixels (solid squares), 800 × 600 pixels (empty squares) and exposure time (empty triangles) in a 250 μm thick material.

Fig. 6
Fig. 6

First and last holograms with a lower BER corresponding to objects with 300 × 300 pixels (a), (b), 400 × 400 pixels (c), (d), 500 × 500 pixels (e), (f), and 800 × 600 pixels (g), (h) in a 250 μm thick layer.

Fig. 7
Fig. 7

(Color online) BER of the objects with 300 × 300 pixels (solid circles), 400 × 400 pixels (empty circles), 500 × 500 pixels (solid squares), 800 × 600 pixels (empty squares), and exposure time (empty triangles), in a 500 μm thick material.

Fig. 8
Fig. 8

First and last holograms with a lower BER corresponding to objects with 300 × 300 pixels (a), (b), 400 × 400 pixels (c), (d), 500 × 500 pixels (e), (f), and 800 × 600 pixels (g), (h) in a 500 μm thick layer.

Tables (2)

Tables Icon

Table 1 Concentrations of the Photopolymer Compositions

Tables Icon

Table 2 LCD Calibration Parameters Independent of the Voltage Applied

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β ( V ) = π Δ n d 2 / λ 0 , δ ( V ) = π Δ n max d 1 / λ 0 ,
W ( x 0 , σ ; x ) = 1 2 π σ exp ( ( x x 0 ) 2 2 σ 2 ) ,
BER = 1 2 [ 0 x c W W ( x ) d x + x c W B ( x ) d x ] ,

Metrics