Abstract

We present first results of Hertz/VPM, the first submillimeter polarimeter employing the dual Variable-delay Polarization Modulator (dual-VPM). This device differs from previously used polarization modulators in that it operates in translation, rather than mechanical rotation. We discuss the basic theory behind this device and its potential advantages over the commonly used half-wave plate. The dual-VPM was tested both at the Submillimeter Telescope Observatory and in the laboratory. In each case we present a detailed description of the setup. We discovered that properties of the VPM wire grids (diameter and spacing) caused behavior that differs from theoretical predictions for ideal wire grid performance. By modifying the polarimeter settings to compensate for this behavior, we found that the dual-VPM system is robust, operating with high efficiency and low instrumental polarization. This device is well suited for air- and space-borne applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Hiltner, “Polarization of light from distant stars by interstellar medium,” Science 109, 165 (1949).
    [Crossref] [PubMed]
  2. J. S. Hall, “Observations of the polarized light from stars,” Science 109, 166-167 (1949).
    [Crossref] [PubMed]
  3. S. Chandrasekhar and E. Fermi, “Magnetic fields in spiral arms,” Astrophys. J. 118, 113-115 (1953).
    [Crossref]
  4. A. Lazarian, “Physics of grain alignment,” in Cosmic Evolution and Galaxy Formation: Structure, Interactions, and Feedback, ASP Conference Series, Vol. 215, J. Franco, L. Terlevich, O. Lopez-Cruz, and I. Aretxaga, eds. (Astronomical Society of the Pacific, 2000), pp. 69-78.
  5. W. I. Cudlip, I. Furniss, K. J. King, and R. E. Jennings, “Far infrared polarimetry of W51A and M42,” Mon. Not. R. Astron. Soc. 200, 1169-1173 (1982).
  6. R. H. Hildebrand, M. Dragovan, and G. Novak, “Detection of submillimeter polarization in the Orion nebula,” Astrophys. J. 284, L51-L54 (1984).
    [Crossref]
  7. D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
    [Crossref]
  8. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  9. H. Shinnaga, M. Tsuboi, and T. Kasuga, “A millimeter polarimeter for the 45 m telescope at Nobeyama,” Publ. Astron. Soc. Jpn. 51, 175-184 (1999).
  10. G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub)millimeter bolometer arrays,” Astron. Astrophys. 422, 751-760 (2004).
    [Crossref]
  11. D. T. Chuss, E. J. Wollack, S. H. Moseley, and G. Novak, “Interferometric polarization control,” Appl. Opt. 45, 5107-5117 (2006).
    [Crossref] [PubMed]
  12. E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.
  13. R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
    [Crossref]
  14. S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
    [Crossref]
  15. G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).
  16. J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
    [Crossref]
  17. D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
    [Crossref]
  18. C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
    [Crossref]
  19. M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
    [Crossref]
  20. D. P. Clemens, B. D. Kane, R. W. Leach, and R. Barvainis, “Millipol, a millimeter/submillimeter wavelength polarimeter--instrument, operation, and calibration,” Publ. Astron. Soc. Pac. 102, 1064-1076 (1990).
    [Crossref]

2006 (2)

D. T. Chuss, E. J. Wollack, S. H. Moseley, and G. Novak, “Interferometric polarization control,” Appl. Opt. 45, 5107-5117 (2006).
[Crossref] [PubMed]

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

2004 (2)

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub)millimeter bolometer arrays,” Astron. Astrophys. 422, 751-760 (2004).
[Crossref]

2001 (1)

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

2000 (1)

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

1999 (2)

J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
[Crossref]

H. Shinnaga, M. Tsuboi, and T. Kasuga, “A millimeter polarimeter for the 45 m telescope at Nobeyama,” Publ. Astron. Soc. Jpn. 51, 175-184 (1999).

1998 (1)

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

1997 (1)

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
[Crossref]

1991 (1)

S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
[Crossref]

1990 (1)

D. P. Clemens, B. D. Kane, R. W. Leach, and R. Barvainis, “Millipol, a millimeter/submillimeter wavelength polarimeter--instrument, operation, and calibration,” Publ. Astron. Soc. Pac. 102, 1064-1076 (1990).
[Crossref]

1984 (1)

R. H. Hildebrand, M. Dragovan, and G. Novak, “Detection of submillimeter polarization in the Orion nebula,” Astrophys. J. 284, L51-L54 (1984).
[Crossref]

1982 (1)

W. I. Cudlip, I. Furniss, K. J. King, and R. E. Jennings, “Far infrared polarimetry of W51A and M42,” Mon. Not. R. Astron. Soc. 200, 1169-1173 (1982).

1953 (1)

S. Chandrasekhar and E. Fermi, “Magnetic fields in spiral arms,” Astrophys. J. 118, 113-115 (1953).
[Crossref]

1949 (2)

W. A. Hiltner, “Polarization of light from distant stars by interstellar medium,” Science 109, 165 (1949).
[Crossref] [PubMed]

J. S. Hall, “Observations of the polarized light from stars,” Science 109, 166-167 (1949).
[Crossref] [PubMed]

Akeson, R. L.

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

Baars, J. W. M.

J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
[Crossref]

Barvainis, R.

D. P. Clemens, B. D. Kane, R. W. Leach, and R. Barvainis, “Millipol, a millimeter/submillimeter wavelength polarimeter--instrument, operation, and calibration,” Publ. Astron. Soc. Pac. 102, 1064-1076 (1990).
[Crossref]

Battistelli, E. S.

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Benford, D. J.

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

Carlstrom, J. E.

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar and E. Fermi, “Magnetic fields in spiral arms,” Astrophys. J. 118, 113-115 (1953).
[Crossref]

Chuss, D. T.

D. T. Chuss, E. J. Wollack, S. H. Moseley, and G. Novak, “Interferometric polarization control,” Appl. Opt. 45, 5107-5117 (2006).
[Crossref] [PubMed]

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

Clemens, D. P.

D. P. Clemens, B. D. Kane, R. W. Leach, and R. Barvainis, “Millipol, a millimeter/submillimeter wavelength polarimeter--instrument, operation, and calibration,” Publ. Astron. Soc. Pac. 102, 1064-1076 (1990).
[Crossref]

Cudlip, W. I.

W. I. Cudlip, I. Furniss, K. J. King, and R. E. Jennings, “Far infrared polarimetry of W51A and M42,” Mon. Not. R. Astron. Soc. 200, 1169-1173 (1982).

Davidson, J. A.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

DePetris, M.

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Dotson, J. A.

S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
[Crossref]

Dotson, J. L.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

Dowell, C. D.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
[Crossref]

Dragovan, M.

R. H. Hildebrand, M. Dragovan, and G. Novak, “Detection of submillimeter polarization in the Orion nebula,” Astrophys. J. 284, L51-L54 (1984).
[Crossref]

Fermi, E.

S. Chandrasekhar and E. Fermi, “Magnetic fields in spiral arms,” Astrophys. J. 118, 113-115 (1953).
[Crossref]

Furniss, I.

W. I. Cudlip, I. Furniss, K. J. King, and R. E. Jennings, “Far infrared polarimetry of W51A and M42,” Mon. Not. R. Astron. Soc. 200, 1169-1173 (1982).

Hall, J. S.

J. S. Hall, “Observations of the polarized light from stars,” Science 109, 166-167 (1949).
[Crossref] [PubMed]

Hildebrand, R. H.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
[Crossref]

S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
[Crossref]

R. H. Hildebrand, M. Dragovan, and G. Novak, “Detection of submillimeter polarization in the Orion nebula,” Astrophys. J. 284, L51-L54 (1984).
[Crossref]

Hiltner, W. A.

W. A. Hiltner, “Polarization of light from distant stars by interstellar medium,” Science 109, 165 (1949).
[Crossref] [PubMed]

Houde, M.

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Jackson, M.

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

Jennings, R. E.

W. I. Cudlip, I. Furniss, K. J. King, and R. E. Jennings, “Far infrared polarimetry of W51A and M42,” Mon. Not. R. Astron. Soc. 200, 1169-1173 (1982).

Kane, B. D.

D. P. Clemens, B. D. Kane, R. W. Leach, and R. Barvainis, “Millipol, a millimeter/submillimeter wavelength polarimeter--instrument, operation, and calibration,” Publ. Astron. Soc. Pac. 102, 1064-1076 (1990).
[Crossref]

Kasuga, T.

H. Shinnaga, M. Tsuboi, and T. Kasuga, “A millimeter polarimeter for the 45 m telescope at Nobeyama,” Publ. Astron. Soc. Jpn. 51, 175-184 (1999).

King, K. J.

W. I. Cudlip, I. Furniss, K. J. King, and R. E. Jennings, “Far infrared polarimetry of W51A and M42,” Mon. Not. R. Astron. Soc. 200, 1169-1173 (1982).

Krejny, M.

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

Kreysa, E.

G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub)millimeter bolometer arrays,” Astron. Astrophys. 422, 751-760 (2004).
[Crossref]

Lamagna, L.

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Lamb, J. W.

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

Lazarian, A.

A. Lazarian, “Physics of grain alignment,” in Cosmic Evolution and Galaxy Formation: Structure, Interactions, and Feedback, ASP Conference Series, Vol. 215, J. Franco, L. Terlevich, O. Lopez-Cruz, and I. Aretxaga, eds. (Astronomical Society of the Pacific, 2000), pp. 69-78.

Leach, R. W.

D. P. Clemens, B. D. Kane, R. W. Leach, and R. Barvainis, “Millipol, a millimeter/submillimeter wavelength polarimeter--instrument, operation, and calibration,” Publ. Astron. Soc. Pac. 102, 1064-1076 (1990).
[Crossref]

Mangum, J. G.

J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
[Crossref]

Maoli, R.

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Martin, R. N.

J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
[Crossref]

McMullin, J. P.

J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
[Crossref]

Melchiorri, F.

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Menten, K. M.

G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub)millimeter bolometer arrays,” Astron. Astrophys. 422, 751-760 (2004).
[Crossref]

Moseley, S. H.

D. T. Chuss, E. J. Wollack, S. H. Moseley, and G. Novak, “Interferometric polarization control,” Appl. Opt. 45, 5107-5117 (2006).
[Crossref] [PubMed]

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

Novak, G.

D. T. Chuss, E. J. Wollack, S. H. Moseley, and G. Novak, “Interferometric polarization control,” Appl. Opt. 45, 5107-5117 (2006).
[Crossref] [PubMed]

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
[Crossref]

S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
[Crossref]

R. H. Hildebrand, M. Dragovan, and G. Novak, “Detection of submillimeter polarization in the Orion nebula,” Astrophys. J. 284, L51-L54 (1984).
[Crossref]

Palladino, E.

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Pernic, R. J.

S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
[Crossref]

Peters, W. L.

J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
[Crossref]

Platt, S. R.

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
[Crossref]

S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
[Crossref]

Reichertz, L. A.

G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub)millimeter bolometer arrays,” Astron. Astrophys. 422, 751-760 (2004).
[Crossref]

Renbarger, T.

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

Savini, G.

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Schleuning, D. A.

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
[Crossref]

Shinnaga, H.

H. Shinnaga, M. Tsuboi, and T. Kasuga, “A millimeter polarimeter for the 45 m telescope at Nobeyama,” Publ. Astron. Soc. Jpn. 51, 175-184 (1999).

Siringo, G.

G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub)millimeter bolometer arrays,” Astron. Astrophys. 422, 751-760 (2004).
[Crossref]

Staguhn, J. G.

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

Tsuboi, M.

H. Shinnaga, M. Tsuboi, and T. Kasuga, “A millimeter polarimeter for the 45 m telescope at Nobeyama,” Publ. Astron. Soc. Jpn. 51, 175-184 (1999).

Vaillancourt, J. E.

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

Voellmer, G. M.

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

Walker, C.

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

Wollack, E. J.

D. T. Chuss, E. J. Wollack, S. H. Moseley, and G. Novak, “Interferometric polarization control,” Appl. Opt. 45, 5107-5117 (2006).
[Crossref] [PubMed]

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

Woody, D. P.

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

Publ. Astron. Soc. Pac. (1)

S. R. Platt, R. H. Hildebrand, R. J. Pernic, J. A. Dotson, and G. Novak, “100 μm Array polarimetry from the kuiper airborne observatory: instrumentation, techniques, and first results,” Publ. Astron. Soc. Pac. 103, 1193-1210 (1991).
[Crossref]

Appl. Opt. (1)

Astron. Astrophys. (1)

G. Siringo, E. Kreysa, L. A. Reichertz, and K. M. Menten, “A new polarimeter for (sub)millimeter bolometer arrays,” Astron. Astrophys. 422, 751-760 (2004).
[Crossref]

Astrophys. J. (3)

S. Chandrasekhar and E. Fermi, “Magnetic fields in spiral arms,” Astrophys. J. 118, 113-115 (1953).
[Crossref]

R. H. Hildebrand, M. Dragovan, and G. Novak, “Detection of submillimeter polarization in the Orion nebula,” Astrophys. J. 284, L51-L54 (1984).
[Crossref]

C. D. Dowell, R. H. Hildebrand, D. A. Schleuning, J. E. Vaillancourt, J. L. Dotson, G. Novak, T. Renbarger, and M. Houde, “Submillimeter array polarimetry with Hertz,” Astrophys. J. 504, 588-598 (1998).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

W. I. Cudlip, I. Furniss, K. J. King, and R. E. Jennings, “Far infrared polarimetry of W51A and M42,” Mon. Not. R. Astron. Soc. 200, 1169-1173 (1982).

Proc. SPIE (2)

D. T. Chuss, D. J. Benford, C. Walker, S. H. Moseley, G. Novak, J. G. Staguhn, and E. J. Wollack, “A 350 μm array polarimeter using translational modulators,” Proc. SPIE 5492, 1450-1460 (2004).
[Crossref]

G. M. Voellmer, D. T. Chuss, M. Jackson, M. Krejny, S. H. Moseley, G. Novak, and E. J. Wollack, “A kinematic flexure-based mechanism for precise parallel motion for the Hertz variable-delay polarization modulator (VPM),” Proc. SPIE 6273, 114 (2006).

Publ. Astron. Soc. Jpn. (1)

H. Shinnaga, M. Tsuboi, and T. Kasuga, “A millimeter polarimeter for the 45 m telescope at Nobeyama,” Publ. Astron. Soc. Jpn. 51, 175-184 (1999).

Publ. Astron. Soc. Pac. (5)

J. W. M. Baars, R. N. Martin, J. G. Mangum, J. P. McMullin, and W. L. Peters, “The Heinrich Hertz Telescope and the Submillimeter Telescope Observatory,”Publ. Astron. Soc. Pac. 111, 627-646 (1999).
[Crossref]

D. A. Schleuning, C. D. Dowell, R. H. Hildebrand, S. R. Platt, and G. Novak, “Hertz, a submillimeter polarimeter,” Publ. Astron. Soc. Pac. 109, 307-318 (1997).
[Crossref]

R. H. Hildebrand, J. A. Davidson, J. L. Dotson, C. D. Dowell, G. Novak, and J. E. Vaillancourt, “A primer on far-infrared polarimetry,” Publ. Astron. Soc. Pac. 112, 1215-1235 (2000).
[Crossref]

M. Houde, R. L. Akeson, J. E. Carlstrom, J. W. Lamb, D. A. Schleuning, and D. P. Woody, “Polarizing grids, their assemblies, and beams of radiation,” Publ. Astron. Soc. Pac. 113, 622-638 (2001).
[Crossref]

D. P. Clemens, B. D. Kane, R. W. Leach, and R. Barvainis, “Millipol, a millimeter/submillimeter wavelength polarimeter--instrument, operation, and calibration,” Publ. Astron. Soc. Pac. 102, 1064-1076 (1990).
[Crossref]

Science (2)

W. A. Hiltner, “Polarization of light from distant stars by interstellar medium,” Science 109, 165 (1949).
[Crossref] [PubMed]

J. S. Hall, “Observations of the polarized light from stars,” Science 109, 166-167 (1949).
[Crossref] [PubMed]

Other (3)

A. Lazarian, “Physics of grain alignment,” in Cosmic Evolution and Galaxy Formation: Structure, Interactions, and Feedback, ASP Conference Series, Vol. 215, J. Franco, L. Terlevich, O. Lopez-Cruz, and I. Aretxaga, eds. (Astronomical Society of the Pacific, 2000), pp. 69-78.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

E. S. Battistelli, M. DePetris, L. Lamagna, R. Maoli, F. Melchiorri, E. Palladino, and G. Savini, “Far infrared polarimeter with very low instrumental polarization,” arXiv:astro-ph/0209180v1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

“Reflective half-wave plate.” Light incident upon a wire grid is separated into orthogonal polarization components; the component parallel to the wire grid is reflected while the perpendicular component is transmitted and reflected by a mirror, traveling an extra distance l (dashed line). When the delay l is set equal to half of the wavelength, this device has the same functionality as a birefringent half-wave plate (HWP).

Fig. 2
Fig. 2

Two views of a schematic optical path for a polarimeter incorporating a dual-VPM modulator. The upper panel shows a top view while the lower panel shows the view “seen” by the incoming radiation. The radiation is reflected by two VPMs having their grid wires rotated by 22.5 ° with respect to one another and is then incident upon a polarizing grid that splits the beam into orthogonal polarization components directed to detectors R and T (standing for reflected and transmitted). Note that the figure is a general schematic and is not representative of the actual grid settings and orientations used for the Hertz/VPM experiment.

Fig. 3
Fig. 3

Views of one VPM. A, Front view. Wire grid is held to the front of the aluminum frame by rare earth magnets. Grid flattener increases planarity of wires. Its interior edge is milled to correspond with a 20 ° incident angle. B, View inside housing for piezoelectric actuator. The motor is surrounded by titanium flexures that magnify the piezo motion. The actuator is connected to two universal joint flexures to couple motion to the mirror and to absorb any twisting motion caused by misalignment. C, Back view under mirror mount, showing double-blade flexure and capacitive sensor. Sensor measures actual mirror–grid separation distance and sends this information to servo controller, completing control loop.

Fig. 4
Fig. 4

Microscope setup for grid–mirror parallelization measurements. The microscope is mounted on a bracket that is moved toward and away from the grid via a linear translation stage that incorporates a digital micrometer. Measurements are made at three points around the edge of the grid.

Fig. 5
Fig. 5

Optics path of Hertz/VPM experiment at SMTO. Optics sit at the Nasmyth focus of telescope. Light is reflected down into the optics plane by two periscope mirrors. Light is collimated with a paraboloidal mirror then passes through the VPMs before being refocused by the second paraboloidal mirror. After refocusing, two relay mirrors send the light to an ellipsoidal mirror, which refocuses the light, this time to match the focal length of Hertz.

Fig. 6
Fig. 6

Photo of the Hertz/dual-VPM experiment at the SMTO. The optics sit at the Nasmyth focus; optics bench mounts to wall via a large flange.

Fig. 7
Fig. 7

Diagram of control electronics. Lines signify paths of communication between components; arrows signify direction. Main control computer communicates with three computers via TCP/IP connections. The data-acquisition computer computes demodulated signals from detectors, synchronized by a chopping frequency sent to the secondary mirror. Telescope-control computer handles telescope motion and positioning. EDAS controls both the VPMs and the Hertz HWP.

Fig. 8
Fig. 8

Interferogram plotting normalized Stokes parameter u versus mirror–grid separation for VPM 2. Input light is assumed to be 100% polarized at an angle of 45 ° with respect to the + x axis (relative to VPM 2). The solid curve is the signal expected for a geometric phase delay with a 10% bandwidth decoherence. This idealized curve has been modified to match the amplitude and phase of the first peak of the observed data. The data do not match this simple geometrically motivated model; there is an asymmetry in the observed data, with the peak–valley separation distances being significantly different from 93 μm , the predicted value for ideal grids. A more detailed model that includes the phase response of the grid is required to reproduce the observed instrumental performance.

Fig. 9
Fig. 9

VPM interferogram obtained using a model that treats wire grid performance [19]. The solid curve shows the model predictions (u versus grid–mirror separation distance) for the case of grid parameters, wavelength, and incident polarization that match our experiment. The model employs a very narrow bandwidth and assumes regular wire spacing. The spike in the solid curve would be expected to be washed out by the large relative bandwidth of Hertz and, indeed, is not observed in Fig. 8. The dashed curve shows the idealized sinusoidal interferogram that would be expected for the case of ideal grid and geometric phase delay. In the long wavelength limit, the model curve approaches the idealized curve.

Fig. 10
Fig. 10

Polarization measurements made with Hertz/VPM polarimeter. Solid circles on axes represent 100% input polarization. Points plotted represent average values calculated for each group. In q u space, points are rotated away from axes by up to 6 ° ; in real space, polarization angles are within 3 ° of nominal values. Overall efficiencies increase as HWP and VPMs are moved to their proper settings. For group 2, u u and q q , as described in Subsections 2C, 4B.

Tables (2)

Tables Icon

Table 1 Optics Elements of the Hertz/VPM Experiment and Their Properties

Tables Icon

Table 2 Modulator Settings and Measured Efficiencies for Datafile Groupings

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I 2 Q 2 + U 2 + V 2 ,
l = 2 d cos θ inc .
R ( or   T ) = ( l 1 r 1 r 2 + l 2 ) / 4 ,
S mod = ( R mod f T mod ) ( R mod + f T mod ) ,
q = ( S pos 2 S pos 1 ) / 2 ,
u = ( S pos 4 S pos 3 ) / 2.
P = q 2 + u 2 ,
φ = ( 1 / 2 ) arctan ( u / q ) .

Metrics