Abstract

We present and demonstrate a compact and miniature snapshot imaging polarimeter camera; it is anticipated that such a camera can be scaled down to less than 1.5 cm. Two Savart plates are used at the pupil plane to generate multiple fringes to encode the full Stokes vector in a single image. A geometric ray model is developed to explain the system. The numerical simulation based on this model is presented. Finally, the validity of the device is demonstrated by showing experimental results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry ,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).
  2. J. P. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486-1492 (2000).
    [CrossRef]
  3. K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510-1519 (2003)
    [CrossRef] [PubMed]
  4. N. Saito and K. Oka, “Two-dimensional measurement of polarization using spatial carrier,” in Extended Abstracts of the 47th Spring Meeting of the Japan Society of Applied Physics and Related Societies (Japan Society of Applied Physics, 2000), in Japanese.
  5. K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
    [CrossRef]
  6. R. S. Sirohi and M. P. Kothiyal, Optical Components, Systems, and Measurement Techniques, (Marcel Dekker, 1991), Chap. 2, p. 68.
  7. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), Chap. 4, p. 60.
  8. H. T. Luo (College of Optical Science, University of Arizona, 1630 East University Boulevard, Tuscon, Arizona 85721, K. Oka and E. L. Dereniak are preparing a paper with the title of “Advanced model for simulating the polarization aberration in a compact Savart plate imaging polarimeter.”

2006 (1)

K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
[CrossRef]

2003 (1)

2000 (1)

1999 (1)

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry ,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).

Brady, D.

Deguzman, P. C.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry ,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).

Dereniak, E. L.

H. T. Luo (College of Optical Science, University of Arizona, 1630 East University Boulevard, Tuscon, Arizona 85721, K. Oka and E. L. Dereniak are preparing a paper with the title of “Advanced model for simulating the polarization aberration in a compact Savart plate imaging polarimeter.”

Goldstein, D.

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), Chap. 4, p. 60.

Guo, J. P.

Jones, M. W.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry ,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).

Kaneko, T.

Kothiyal, M. P.

R. S. Sirohi and M. P. Kothiyal, Optical Components, Systems, and Measurement Techniques, (Marcel Dekker, 1991), Chap. 2, p. 68.

Luo, H. T.

H. T. Luo (College of Optical Science, University of Arizona, 1630 East University Boulevard, Tuscon, Arizona 85721, K. Oka and E. L. Dereniak are preparing a paper with the title of “Advanced model for simulating the polarization aberration in a compact Savart plate imaging polarimeter.”

Meier, J. T.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry ,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).

Nordin, G. P.

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry ,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).

Oka, K.

K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
[CrossRef]

K. Oka and T. Kaneko, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510-1519 (2003)
[CrossRef] [PubMed]

H. T. Luo (College of Optical Science, University of Arizona, 1630 East University Boulevard, Tuscon, Arizona 85721, K. Oka and E. L. Dereniak are preparing a paper with the title of “Advanced model for simulating the polarization aberration in a compact Savart plate imaging polarimeter.”

N. Saito and K. Oka, “Two-dimensional measurement of polarization using spatial carrier,” in Extended Abstracts of the 47th Spring Meeting of the Japan Society of Applied Physics and Related Societies (Japan Society of Applied Physics, 2000), in Japanese.

Saito, N.

K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
[CrossRef]

N. Saito and K. Oka, “Two-dimensional measurement of polarization using spatial carrier,” in Extended Abstracts of the 47th Spring Meeting of the Japan Society of Applied Physics and Related Societies (Japan Society of Applied Physics, 2000), in Japanese.

Sirohi, R. S.

R. S. Sirohi and M. P. Kothiyal, Optical Components, Systems, and Measurement Techniques, (Marcel Dekker, 1991), Chap. 2, p. 68.

Appl. Opt. (1)

Micropolarizer array for infrared imaging polarimetry (1)

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry ,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).

Opt. Express (1)

Proc. SPIE (1)

K. Oka and N. Saito, “Snapshot complete imaging polarimeter using Savart plates,” Proc. SPIE 6295, 629508 (2006).
[CrossRef]

Other (4)

R. S. Sirohi and M. P. Kothiyal, Optical Components, Systems, and Measurement Techniques, (Marcel Dekker, 1991), Chap. 2, p. 68.

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), Chap. 4, p. 60.

H. T. Luo (College of Optical Science, University of Arizona, 1630 East University Boulevard, Tuscon, Arizona 85721, K. Oka and E. L. Dereniak are preparing a paper with the title of “Advanced model for simulating the polarization aberration in a compact Savart plate imaging polarimeter.”

N. Saito and K. Oka, “Two-dimensional measurement of polarization using spatial carrier,” in Extended Abstracts of the 47th Spring Meeting of the Japan Society of Applied Physics and Related Societies (Japan Society of Applied Physics, 2000), in Japanese.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical layout of a miniature SIP. The double ended arrows, each tilting at 45 ° with respect to the edge of the surfaces, depict the optic axes of the calcite plates. Inset I, the OPD formation of a SP between two orthogonal polarization rays for a skewed incident ray. Inset II, the four emerging rays off the back surface of SP 2. The e and o denote the polarization consequences through the system.

Fig. 2
Fig. 2

(a) Simulated image spot diagrams of a miniature SIP at best focus. The imaging lens was modeled as a paraxial lens. The object is 1 m away, and two field points ( 0 ° , 0 ° ) and ( 25 ° , 25 ° ) are sampled. The off-axis spot diagram displays anisotropy. (b) The ray shearing diagrams at the back surface of SP 2 for the ( 0 ° , 0 ° ) and ( 25 ° , 25 ° ) field points, respectively. For visual purposes, one incident ray is shown. The dotted rectangle is drawn to illustrate the diagonal shearing among the four rays.

Fig. 3
Fig. 3

Demonstrated compact SIP with a scaling factor of 15 from a miniature SIP. The CCD camera has a pixel spacing of 4.75 μm .

Fig. 4
Fig. 4

(a) Raw image obtained with the compact SIP. A 3 nm bandwidth filter is used in front of the polarimeter. (b) Reconstructed Stokes images.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x i , y i ) = | 1 2 E y ( x i , y i ; t ) e i ϕ 1 1 2 E y ( x i , y i ; t ) e i ϕ 2 + 1 2 E x ( x i , y i ; t ) e i ϕ 3 + 1 2 E x ( x i , y i ; t ) e i ϕ 4 | 2 ,
I = 1 4 { 2 [ | E y | 2 + | E x | 2 ] [ | E y | 2 e i ( ϕ 2 ϕ 1 ) + c . c . ] + [ | E x | 2 e i ( ϕ 4 ϕ 3 ) + c . c . ] + [ E x * E y e i ( ϕ 3 ϕ 1 ) + c . c . ] [ E x * E y e i ( ϕ 4 ϕ 2 ) + c . c . ] + [ E x * E y e i ( ϕ 4 ϕ 1 ) + c . c . ] [ E x * E y e i ( ϕ 3 ϕ 2 ) + c . c . ] } ,
ϕ 1 ( x i , y i ) = 0 , ϕ 2 ( x i , y i ) = 2 π Δ λ f ( x i + y i ) , ϕ 3 ( x i , y i ) = 2 π 2 Δ λ f x i , ϕ 4 ( x , y ) = 2 π Δ λ f ( x i - y i ) ,
| E x | 2 + | E y | 2 = S 0 , | E x | 2 = 1 2 ( S 0 + S 1 ) , | E y | 2 = 1 2 ( S 0 S 1 ) , E x * E y = 1 2 ( S 2 + i S 3 ) .
I ( x i , y i ) = 1 2 S 0 + 1 2 S 1 · cos ( 2 π Ω ( x i + y i ) ) + 1 4 | S 23 | · cos [ 2 π ( 2 Ω ) x i arg ( S 23 ) ] 1 4 | S 23 | i · cos [ 2 π ( 2 Ω ) y i + arg ( S 23 ) ] S 23 = S 2 + i S 3 , Ω = Δ λ f .

Metrics