Abstract

Liquid crystal displays (LCDs) are invaluable for a variety of optical applications, including the encoding of programmable diffractive optical elements. The pixel structure in these devices produces a set of diffracted orders of which the central order is the strongest. In most devices that we have examined, the intensity distribution of the diffraction pattern is independent of the wavelength of the illuminating light. Recently we have been examining the performance of LCDs having very small pixel sizes. We compare results for two devices from the same manufacturer. One of them exhibits the normal behavior. For the other, we find surprisingly strong wavelength dependence. The diffraction pattern varies from having most of the energy in the zero order for long wavelengths to having the energy distributed among 5060 orders as the wavelength decreases. We attribute this behavior to a phase structure over each pixel. We analyze this behavior using a simple two-dimensional model that qualitatively explains the phenomenon. These results can be viewed in two ways—on the positive side this behavior might lead to optical logic or fan-out applications. On the negative side, there is less intensity available in the normally used zero order.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Liu, J. A. Davis, and R. A. Lilly, “Optical data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635-637 (1985).
    [CrossRef] [PubMed]
  2. D. A. Gregory, “Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator,” Appl. Opt. 25, 467-469 (1986).
    [CrossRef] [PubMed]
  3. J. Amako and T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533-L1535 (1990).
    [CrossRef]
  4. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), Sect. 8.6.1, Diffraction gratings.
  5. A. Vargas, J. Campos, M. J. Yzuel, C. Iemmi, and S. Ledesma, “One-step multichannel pattern recognition based on the pixelated structure of a spatial light modulator,” Appl. Opt. 37, 2063-2066 (1998).
    [CrossRef]
  6. J. A. Davis, B. A. Slovick, C. S. Tuvey, and D. M. Cottrell, “High diffraction efficiency from one--and two-dimensional Nyquist frequency binary-phase gratings,” Appl. Opt. 47, 2829-2834(2008).
    [CrossRef] [PubMed]
  7. C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 937-945 (1998).
  8. J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
    [CrossRef]
  9. J. A. Davis, P. Tsai, K. G. D'Nelly, and I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulator,” Opt. Eng. 38, 929-932 (1999).
    [CrossRef]
  10. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
    [CrossRef]

2008 (1)

1999 (3)

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D'Nelly, and I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulator,” Opt. Eng. 38, 929-932 (1999).
[CrossRef]

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
[CrossRef]

1998 (2)

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 937-945 (1998).

A. Vargas, J. Campos, M. J. Yzuel, C. Iemmi, and S. Ledesma, “One-step multichannel pattern recognition based on the pixelated structure of a spatial light modulator,” Appl. Opt. 37, 2063-2066 (1998).
[CrossRef]

1990 (1)

J. Amako and T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533-L1535 (1990).
[CrossRef]

1986 (1)

1985 (1)

Allison, D. B.

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Amako, J.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
[CrossRef]

J. Amako and T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533-L1535 (1990).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), Sect. 8.6.1, Diffraction gratings.

Campos, J.

Cottrell, D. M.

J. A. Davis, B. A. Slovick, C. S. Tuvey, and D. M. Cottrell, “High diffraction efficiency from one--and two-dimensional Nyquist frequency binary-phase gratings,” Appl. Opt. 47, 2829-2834(2008).
[CrossRef] [PubMed]

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
[CrossRef]

Davis, J. A.

J. A. Davis, B. A. Slovick, C. S. Tuvey, and D. M. Cottrell, “High diffraction efficiency from one--and two-dimensional Nyquist frequency binary-phase gratings,” Appl. Opt. 47, 2829-2834(2008).
[CrossRef] [PubMed]

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D'Nelly, and I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulator,” Opt. Eng. 38, 929-932 (1999).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

H. K. Liu, J. A. Davis, and R. A. Lilly, “Optical data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635-637 (1985).
[CrossRef] [PubMed]

D'Nelly, K. G.

J. A. Davis, P. Tsai, K. G. D'Nelly, and I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulator,” Opt. Eng. 38, 929-932 (1999).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Gregory, D. A.

Iemmi, C.

Ledesma, S.

Lilly, R. A.

Liu, H. K.

Lu, K.

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 937-945 (1998).

Moreno, I.

J. A. Davis, P. Tsai, K. G. D'Nelly, and I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulator,” Opt. Eng. 38, 929-932 (1999).
[CrossRef]

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Slovick, B. A.

Sonehara, T.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
[CrossRef]

J. Amako and T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533-L1535 (1990).
[CrossRef]

Soutar, C.

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 937-945 (1998).

Tsai, P.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D'Nelly, and I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulator,” Opt. Eng. 38, 929-932 (1999).
[CrossRef]

Tuvey, C. S.

Vargas, A.

Wilson, M. L.

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), Sect. 8.6.1, Diffraction gratings.

Yzuel, M. J.

Appl. Opt. (3)

Jpn. J. Appl. Phys. (1)

J. Amako and T. Sonehara, “Computer generated hologram using TFT active matrix liquid crystal spatial light modulator (TFT-LCSLM),” Jpn. J. Appl. Phys. 29, L1533-L1535 (1990).
[CrossRef]

Opt. Eng. (4)

C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 937-945 (1998).

J. A. Davis, D. B. Allison, K. G. D'Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705-709 (1999).
[CrossRef]

J. A. Davis, P. Tsai, K. G. D'Nelly, and I. Moreno, “Simple technique for determining the extraordinary axis direction for twisted nematic liquid crystal spatial light modulator,” Opt. Eng. 38, 929-932 (1999).
[CrossRef]

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051-1057 (1999).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), Sect. 8.6.1, Diffraction gratings.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Pixel structure for CRL Opto LCD.

Fig. 2
Fig. 2

Diffraction patterns for CRL LCD at wavelengths of (a)  1500 nm , (b)  980 nm , (c)  780 nm , (d)  633 nm , (e)  543 nm , and (f)  408 nm .

Fig. 3
Fig. 3

Intensities diffracted into various horizontal orders for different wavelengths of (a)  1500 nm , (b)  980 nm , (c)  780 nm , (d)  633 nm , (e)  543 nm , and (f)  408 nm .

Fig. 4
Fig. 4

Two-dimensional simplified model. The central area of each pixel has a phase shift ϕ with respect to the outer area.

Fig. 5
Fig. 5

Diffraction patterns derived from the two-dimensional simplified model for different values of the defect phase depth φ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t ( x , y ) = { m , n δ ( x m Δ x ) δ ( y n Δ y ) } f ( x , y ) .
T ( p , q ) = { 1 Δ x Δ y m , n δ ( p m γ x ) δ ( q n γ y ) } F ( p , q ) .
I m n = | T ( m γ x , n γ y ) | 2 = | F ( m γ x , n γ y ) | 2 ( Δ x Δ y ) 2 .
f ( x , y ) = rect ( x w ) rect ( y w ) + ( e i ϕ 1 ) rect ( x l ) rect ( y l ) .
F ( p , q ) = w 2 sinc ( w p / 2 ) sinc ( w q / 2 ) + ( e i ϕ 1 ) l 2 sinc ( p l / 2 ) sinc ( q l / 2 ) .

Metrics