Abstract

We present a sequential algorithm for estimating both concentration dependence on range and time and backscatter coefficient spectral dependence of optically thin localized atmospheric aerosols using data from rapidly tuned lidar. The range dependence of the aerosol is modeled as an expansion of the concentration in an orthonormal basis set whose coefficients carry the time dependence. Two estimators are run in parallel: a Kalman filter for the concentration range and time dependence and a maximum-likelihood estimator for the aerosol backscatter wavelength and time dependence. These two estimators exchange information continuously over the data-processing stream. The state model parameters of the Kalman filter are also estimated sequentially together with the concentration and backscatter. Lidar data collected prior to the aerosol release are used to estimate the ambient lidar return. The approach is illustrated on atmospheric backscatter long-wave infrared (CO2) lidar data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription