C. C. Huang and C. C. Huang, “A novel wide-angle beam propagation method based on the spectral collocation scheme for computing tilted waveguides,” IEEE Photon. Technol. Lett. 17, 1872-1874 (2005).

[CrossRef]

I. Deshmukh and Q. H. Liu, “Pseudospectral beam-propagation method for optical waveguides,” IEEE Photonics Technol. Lett. 15, 60-62 (2003).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

D. Yevick, “The application of complex Padé approximants to vector field propagation,” IEEE Photon. Technol. Lett. 12, 1636-1638 (2000).

[CrossRef]

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

P. Sewell, T. M. Benson, S. Sujecki, and P. C. Kendall, “The dispersion characteristics of oblique coordinate beam propagation algorithms,” J. Lightwave Technol. 17, 514-518(1999).

[CrossRef]

S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” J. Lightwave Technol. 17, 2379-2388 (1999).

[CrossRef]

T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Opt. Quantum Electron. 31, 689-793 (1999).

[CrossRef]

P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” J. Lightwave Technol. 15, 688-696 (1997).

[CrossRef]

J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Finite-difference beam propagation method based on the generalized Douglas scheme for nonuniform grid,” IEEE Photon. Technol. Lett. 9, 67-69 (1997).

[CrossRef]

C. Vassallo, “Interest of improved three-point formulas for finite-difference modelling of optical devices,” J. Opt. Soc. Am. A 14, 3273-3284 (1997).

[CrossRef]

S. F. Helfert and R. Pregla, “Finite difference expressions for arbitrarily positioned dielectric steps in waveguide structures,” J. Lightwave Technol. 14, 2414-2421 (1996).

M. Koshiba and Y. Tsuji, “A wide-angle finite-element beam propagation method,” IEEE Photon. Technol. Lett. 8, 1208-1210 (1996).

[CrossRef]

I. Ilić, R. Scarmozzino, and R. M. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modelling of waveguiding circuits,” J. Lightwave Technol. 14, 2813-2822 (1996).

[CrossRef]

P. Sewell, T. Anada, T. M. Benson, and P. C. Kendall, “Non standard beam propagation,” Microw. Opt. Technol. Lett. 13, 24-26 (1996).

[CrossRef]

C. Vassallo, “Limitations of the wide angle beam propagation method in nonuniform systems,” J. Opt. Soc. Am. A 13, 761-770 (1996).

[CrossRef]

J. Yamauchi, J. Shibayama, and H. Nakano, “Finite difference beam propagation method using the oblique coordinate system,” Electron. Commun. Jpn. 2, Electron. 78, 20-27(1995).

D. Yevick and B. Hermansson, “Convergence properties of wide-angle techniques,” IEEE Photon. Technol. Lett. 6, 1457-1459 (1994).

[CrossRef]

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, “On the accuracy of the finite difference method for applications in beam propagation techniques,” Opt. Commun. 94, 506-508(1992).

[CrossRef]

D. Yevick, “Physics and simulation of optoelectronic devices,” Proc. SPIE 1679, 37-45 (1992).

[CrossRef]

G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426-1428 (1992).

[CrossRef]
[PubMed]

G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743-1745 (1992).

[CrossRef]
[PubMed]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335-1339 (1990).

[CrossRef]

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” J. Lightwave Technol. 15, 688-696 (1997).

[CrossRef]

P. Sewell, T. Anada, T. M. Benson, and P. C. Kendall, “Non standard beam propagation,” Microw. Opt. Technol. Lett. 13, 24-26 (1996).

[CrossRef]

D. Z. Djurdjevic, T. M. Benson, P. Sewell, and A. Vukovic, “Fast and accurate analysis of 3-D curved optical waveguide couplers,” J. Lightwave Technol. 22, 2333-2340 (2004).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Opt. Quantum Electron. 31, 689-793 (1999).

[CrossRef]

P. Sewell, T. M. Benson, S. Sujecki, and P. C. Kendall, “The dispersion characteristics of oblique coordinate beam propagation algorithms,” J. Lightwave Technol. 17, 514-518(1999).

[CrossRef]

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” J. Lightwave Technol. 17, 2379-2388 (1999).

[CrossRef]

P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” J. Lightwave Technol. 15, 688-696 (1997).

[CrossRef]

P. Sewell, T. Anada, T. M. Benson, and P. C. Kendall, “Non standard beam propagation,” Microw. Opt. Technol. Lett. 13, 24-26 (1996).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335-1339 (1990).

[CrossRef]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335-1339 (1990).

[CrossRef]

I. Deshmukh and Q. H. Liu, “Pseudospectral beam-propagation method for optical waveguides,” IEEE Photonics Technol. Lett. 15, 60-62 (2003).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

G. R. Hadley, “Slanted-wall beam propagation,” J. Lightwave Technol. 25, 2367-2375 (2007).

[CrossRef]

G. R. Hadley, “Low truncation error finite difference equations for photonics simulation I: beam propagation,” J. Lightwave Technol. 16, 134-141 (1998).

[CrossRef]

G. R. Hadley, “Multistep method for wide-angle beam propagation,” Opt. Lett. 17, 1743-1745 (1992).

[CrossRef]
[PubMed]

G. R. Hadley, “Wide-angle beam propagation using Padé approximant operators,” Opt. Lett. 17, 1426-1428 (1992).

[CrossRef]
[PubMed]

S. F. Helfert and R. Pregla, “Finite difference expressions for arbitrarily positioned dielectric steps in waveguide structures,” J. Lightwave Technol. 14, 2414-2421 (1996).

D. Yevick and B. Hermansson, “Convergence properties of wide-angle techniques,” IEEE Photon. Technol. Lett. 6, 1457-1459 (1994).

[CrossRef]

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, “On the accuracy of the finite difference method for applications in beam propagation techniques,” Opt. Commun. 94, 506-508(1992).

[CrossRef]

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

C. C. Huang and C. C. Huang, “A novel wide-angle beam propagation method based on the spectral collocation scheme for computing tilted waveguides,” IEEE Photon. Technol. Lett. 17, 1872-1874 (2005).

[CrossRef]

C. C. Huang and C. C. Huang, “A novel wide-angle beam propagation method based on the spectral collocation scheme for computing tilted waveguides,” IEEE Photon. Technol. Lett. 17, 1872-1874 (2005).

[CrossRef]

I. Ilić, R. Scarmozzino, and R. M. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modelling of waveguiding circuits,” J. Lightwave Technol. 14, 2813-2822 (1996).

[CrossRef]

T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Opt. Quantum Electron. 31, 689-793 (1999).

[CrossRef]

P. Sewell, T. M. Benson, S. Sujecki, and P. C. Kendall, “The dispersion characteristics of oblique coordinate beam propagation algorithms,” J. Lightwave Technol. 17, 514-518(1999).

[CrossRef]

S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” J. Lightwave Technol. 17, 2379-2388 (1999).

[CrossRef]

P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” J. Lightwave Technol. 15, 688-696 (1997).

[CrossRef]

P. Sewell, T. Anada, T. M. Benson, and P. C. Kendall, “Non standard beam propagation,” Microw. Opt. Technol. Lett. 13, 24-26 (1996).

[CrossRef]

M. Koshiba and Y. Tsuji, “A wide-angle finite-element beam propagation method,” IEEE Photon. Technol. Lett. 8, 1208-1210 (1996).

[CrossRef]

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, “On the accuracy of the finite difference method for applications in beam propagation techniques,” Opt. Commun. 94, 506-508(1992).

[CrossRef]

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, “On the accuracy of the finite difference method for applications in beam propagation techniques,” Opt. Commun. 94, 506-508(1992).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

I. Deshmukh and Q. H. Liu, “Pseudospectral beam-propagation method for optical waveguides,” IEEE Photonics Technol. Lett. 15, 60-62 (2003).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Finite-difference beam propagation method based on the generalized Douglas scheme for nonuniform grid,” IEEE Photon. Technol. Lett. 9, 67-69 (1997).

[CrossRef]

J. Yamauchi, J. Shibayama, and H. Nakano, “Finite difference beam propagation method using the oblique coordinate system,” Electron. Commun. Jpn. 2, Electron. 78, 20-27(1995).

I. Ilić, R. Scarmozzino, and R. M. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modelling of waveguiding circuits,” J. Lightwave Technol. 14, 2813-2822 (1996).

[CrossRef]

S. F. Helfert and R. Pregla, “Finite difference expressions for arbitrarily positioned dielectric steps in waveguide structures,” J. Lightwave Technol. 14, 2414-2421 (1996).

I. Ilić, R. Scarmozzino, and R. M. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modelling of waveguiding circuits,” J. Lightwave Technol. 14, 2813-2822 (1996).

[CrossRef]

J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Finite-difference beam propagation method based on the generalized Douglas scheme for nonuniform grid,” IEEE Photon. Technol. Lett. 9, 67-69 (1997).

[CrossRef]

D. Z. Djurdjevic, T. M. Benson, P. Sewell, and A. Vukovic, “Fast and accurate analysis of 3-D curved optical waveguide couplers,” J. Lightwave Technol. 22, 2333-2340 (2004).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Opt. Quantum Electron. 31, 689-793 (1999).

[CrossRef]

P. Sewell, T. M. Benson, S. Sujecki, and P. C. Kendall, “The dispersion characteristics of oblique coordinate beam propagation algorithms,” J. Lightwave Technol. 17, 514-518(1999).

[CrossRef]

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” J. Lightwave Technol. 17, 2379-2388 (1999).

[CrossRef]

P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” J. Lightwave Technol. 15, 688-696 (1997).

[CrossRef]

P. Sewell, T. Anada, T. M. Benson, and P. C. Kendall, “Non standard beam propagation,” Microw. Opt. Technol. Lett. 13, 24-26 (1996).

[CrossRef]

J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Finite-difference beam propagation method based on the generalized Douglas scheme for nonuniform grid,” IEEE Photon. Technol. Lett. 9, 67-69 (1997).

[CrossRef]

J. Yamauchi, J. Shibayama, and H. Nakano, “Finite difference beam propagation method using the oblique coordinate system,” Electron. Commun. Jpn. 2, Electron. 78, 20-27(1995).

S. Sujecki, “Wide-angle, finite difference beam propagation in oblique coordinate system,” J. Opt. Soc. Am. A 25, 138-145(2008).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Opt. Quantum Electron. 31, 689-793 (1999).

[CrossRef]

P. Sewell, T. M. Benson, S. Sujecki, and P. C. Kendall, “The dispersion characteristics of oblique coordinate beam propagation algorithms,” J. Lightwave Technol. 17, 514-518(1999).

[CrossRef]

S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” J. Lightwave Technol. 17, 2379-2388 (1999).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

M. Koshiba and Y. Tsuji, “A wide-angle finite-element beam propagation method,” IEEE Photon. Technol. Lett. 8, 1208-1210 (1996).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Finite-difference beam propagation method based on the generalized Douglas scheme for nonuniform grid,” IEEE Photon. Technol. Lett. 9, 67-69 (1997).

[CrossRef]

J. Yamauchi, J. Shibayama, and H. Nakano, “Finite difference beam propagation method using the oblique coordinate system,” Electron. Commun. Jpn. 2, Electron. 78, 20-27(1995).

D. Yevick, “The application of complex Padé approximants to vector field propagation,” IEEE Photon. Technol. Lett. 12, 1636-1638 (2000).

[CrossRef]

D. Yevick and B. Hermansson, “Convergence properties of wide-angle techniques,” IEEE Photon. Technol. Lett. 6, 1457-1459 (1994).

[CrossRef]

D. Yevick, “Physics and simulation of optoelectronic devices,” Proc. SPIE 1679, 37-45 (1992).

[CrossRef]

J. Yamauchi, J. Shibayama, and H. Nakano, “Finite difference beam propagation method using the oblique coordinate system,” Electron. Commun. Jpn. 2, Electron. 78, 20-27(1995).

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335-1339 (1990).

[CrossRef]

S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T. M. Benson, G. Erbert, I. Esquivias, and E. C. Larkins, “Non-linear properties of tapered laser cavities,” IEEE J. Sel. Top. Quantum Electron. 9, 823 (2003).

[CrossRef]

D. Yevick, “The application of complex Padé approximants to vector field propagation,” IEEE Photon. Technol. Lett. 12, 1636-1638 (2000).

[CrossRef]

D. Yevick and B. Hermansson, “Convergence properties of wide-angle techniques,” IEEE Photon. Technol. Lett. 6, 1457-1459 (1994).

[CrossRef]

J. Yamauchi, J. Shibayama, M. Sekiguchi, and H. Nakano, “Finite-difference beam propagation method based on the generalized Douglas scheme for nonuniform grid,” IEEE Photon. Technol. Lett. 9, 67-69 (1997).

[CrossRef]

M. Koshiba and Y. Tsuji, “A wide-angle finite-element beam propagation method,” IEEE Photon. Technol. Lett. 8, 1208-1210 (1996).

[CrossRef]

C. C. Huang and C. C. Huang, “A novel wide-angle beam propagation method based on the spectral collocation scheme for computing tilted waveguides,” IEEE Photon. Technol. Lett. 17, 1872-1874 (2005).

[CrossRef]

I. Deshmukh and Q. H. Liu, “Pseudospectral beam-propagation method for optical waveguides,” IEEE Photonics Technol. Lett. 15, 60-62 (2003).

[CrossRef]

T. Anada, T. Hokazono, T. Hiraoka, J. P. Hsu, T. M. Benson, and P. Sewell, “Very-wide-angle beam propagation methods for integrated optical circuits,” IEICE Trans. Electron. E82-C, 1154-1158 (1999).

P. Sewell, T. M. Benson, T. Anada, and P. C. Kendall, “Bi-oblique propagation analysis of symmetric and asymmetric Y-junctions,” J. Lightwave Technol. 15, 688-696 (1997).

[CrossRef]

G. R. Hadley, “Low truncation error finite difference equations for photonics simulation I: beam propagation,” J. Lightwave Technol. 16, 134-141 (1998).

[CrossRef]

P. Sewell, T. M. Benson, S. Sujecki, and P. C. Kendall, “The dispersion characteristics of oblique coordinate beam propagation algorithms,” J. Lightwave Technol. 17, 514-518(1999).

[CrossRef]

S. Sujecki, P. Sewell, T. M. Benson, and P. C. Kendall, “Novel beam propagation algorithms for tapered optical structures,” J. Lightwave Technol. 17, 2379-2388 (1999).

[CrossRef]

D. Z. Djurdjevic, T. M. Benson, P. Sewell, and A. Vukovic, “Fast and accurate analysis of 3-D curved optical waveguide couplers,” J. Lightwave Technol. 22, 2333-2340 (2004).

[CrossRef]

G. R. Hadley, “Slanted-wall beam propagation,” J. Lightwave Technol. 25, 2367-2375 (2007).

[CrossRef]

I. Ilić, R. Scarmozzino, and R. M. Osgood, “Investigation of the Padé approximant-based wide-angle beam propagation method for accurate modelling of waveguiding circuits,” J. Lightwave Technol. 14, 2813-2822 (1996).

[CrossRef]

C. Vassallo, “Limitations of the wide angle beam propagation method in nonuniform systems,” J. Opt. Soc. Am. A 13, 761-770 (1996).

[CrossRef]

S. Sujecki, “Wide-angle, finite difference beam propagation in oblique coordinate system,” J. Opt. Soc. Am. A 25, 138-145(2008).

[CrossRef]

C. Vassallo, “Interest of improved three-point formulas for finite-difference modelling of optical devices,” J. Opt. Soc. Am. A 14, 3273-3284 (1997).

[CrossRef]

P. Sewell, T. Anada, T. M. Benson, and P. C. Kendall, “Non standard beam propagation,” Microw. Opt. Technol. Lett. 13, 24-26 (1996).

[CrossRef]

H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck, “On the accuracy of the finite difference method for applications in beam propagation techniques,” Opt. Commun. 94, 506-508(1992).

[CrossRef]

T. M. Benson, P. Sewell, S. Sujecki, and P. C. Kendall, “Structure related beam propagation,” Opt. Quantum Electron. 31, 689-793 (1999).

[CrossRef]

D. Yevick, “Physics and simulation of optoelectronic devices,” Proc. SPIE 1679, 37-45 (1992).

[CrossRef]

S. F. Helfert and R. Pregla, “Finite difference expressions for arbitrarily positioned dielectric steps in waveguide structures,” J. Lightwave Technol. 14, 2414-2421 (1996).