Abstract

Spontaneous gas-phase Raman scattering using a hollow-core photonic bandgap fiber (HC-PBF) for both the gas cell and the Stokes light collector is reported. It was predicted that the HC-PBF configuration would yield several hundred times signal enhancement in Stokes power over a traditional free-space configuration because of increased interaction lengths and large collection angles. Predictions were verified by using nitrogen Stokes signals. The utility of this system was demonstrated by measuring the Raman signals as functions of concentration for major species in natural gas. This allowed photomultiplier-based measurements of natural gas species in relatively short integration times, measurements that were previously difficult with other systems.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).
  2. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley-Interscience, 1977).
  3. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  4. P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(5), 11-15 (October 2007).
  5. A. M. Zheltikov, “Ultrashort light pulses in hollow waveguides,” Phys. Usp. 45, 687-718 (2002).
    [CrossRef]
  6. S. Sensarn, S. N. Goda, G. Y. Yin, and S. E. Harris, “Molecular modulation in a hollow fiber,” Opt. Lett. 31, 2836-2838 (2006).
    [CrossRef] [PubMed]
  7. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique” Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  8. R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-stokes Raman scattering in a hollow dielectric waveguide,” Appl. Phys. Lett. 30, 417-419 (1977).
    [CrossRef]
  9. A. M. Burzo, A. V. Chugreev, and A. V. Sokolov, “Optimized control of generation of a few cycle pulses by molecular modulation,” Opt. Commun. 264, 454-462 (2006).
    [CrossRef]
  10. S. M. Howdle, K. Stanley, V. K. Popov, and V. N. Bagratashvili, “Can high-pressure Raman spectroscopy be simplified? A microscale optical-fiber capillary cell for the study of supercritical fluids,” Appl. Spectrosc. , 48, 214-218 (1994).
    [CrossRef]
  11. S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, “Phase-matched four-wave mixing and sensing of water molecules by coherent anti-stokes Raman scattering in large-core-area hollow photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2049-2053 (2005).
    [CrossRef]
  12. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004).
    [CrossRef]
  13. S. D. Schwab and R. L. McCreery, “Remote, long-pathlength cell for high-sensitivity Raman spectroscopy,” Appl. Spectrosc. , 41, 126-130, (1987).
    [CrossRef]
  14. M. J. Renn and R. Rastel, “Particle manipulation and surface patterning by laser guidance,” J. Vac. Sci. Technol. B 16, 3859-3863 (1998).
    [CrossRef]
  15. R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
    [CrossRef]
  16. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).
  17. C. C. Gregory, “Attenuation, modal, and polarization properties of n<1, hollow dielectric waveguides,” Appl. Opt. 32, 5302-5309 (1993).
    [CrossRef] [PubMed]
  18. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metal and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).
  19. P. Russell, “Photonic crystal fibers,” Science 299, 358-362(2003).
    [CrossRef] [PubMed]
  20. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
    [CrossRef] [PubMed]
  21. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  22. P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News , 18(7), 26-31 (July/August 2007).
  23. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002).
    [CrossRef] [PubMed]
  24. S.-G. Li, S.-Y. Liu, Z.-Y. Song, Y. Han, T.-L. Cheng, G.-Y. Zhou, and L.-T. Hou, “Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers,” Appl. Opt. 46, 5183-5188 (2007).
    [CrossRef] [PubMed]
  25. W. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, “Raman cross section of some simple gases,” J. Opt. Soc. Am. 63, 73-77 (1973).
    [CrossRef]
  26. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  27. HC-580 HC-PBF datasheet, retrieved 1 June 2007 from http://www.crystal-fibre.com/datasheets/HC-580-01.pdf.
  28. M. M. Carrabba, K. M. Spencer, C. Rich, and D. Rauh, “The utilization of a holographic Bragg diffraction filter for Rayleigh line rejection in Raman spectroscopy,” Appl. Spectrosc. 44, 1558-1561 (1990).
    [CrossRef]
  29. “RazorEdge long wave pass Raman filter,” http://www.semrock.com/Catalog/RamanEdgeFilter_spectra.htm
  30. J. B. Evett and C. Liu, Fundamentals of Fluid Mechanics (McGraw-Hill, 1987).
  31. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790-2797(2008).
    [CrossRef] [PubMed]
  32. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  33. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911-1913(2006).
    [CrossRef] [PubMed]

2008

2007

2006

2005

2004

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004).
[CrossRef]

2003

P. Russell, “Photonic crystal fibers,” Science 299, 358-362(2003).
[CrossRef] [PubMed]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002).
[CrossRef] [PubMed]

A. M. Zheltikov, “Ultrashort light pulses in hollow waveguides,” Phys. Usp. 45, 687-718 (2002).
[CrossRef]

2000

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

1998

M. J. Renn and R. Rastel, “Particle manipulation and surface patterning by laser guidance,” J. Vac. Sci. Technol. B 16, 3859-3863 (1998).
[CrossRef]

1996

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1994

1993

1990

1987

1977

R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-stokes Raman scattering in a hollow dielectric waveguide,” Appl. Phys. Lett. 30, 417-419 (1977).
[CrossRef]

1973

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metal and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Addison, C. J.

Antonopoulos, G.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002).
[CrossRef] [PubMed]

Bagratashvili, V. N.

Benabid, F.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002).
[CrossRef] [PubMed]

Birks, T.

Bjorklund, G. C.

R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-stokes Raman scattering in a hollow dielectric waveguide,” Appl. Phys. Lett. 30, 417-419 (1977).
[CrossRef]

Blades, M. W.

Burzo, A. M.

A. M. Burzo, A. V. Chugreev, and A. V. Sokolov, “Optimized control of generation of a few cycle pulses by molecular modulation,” Opt. Commun. 264, 454-462 (2006).
[CrossRef]

Carrabba, M. M.

Cheng, T.-L.

Chugreev, A. V.

A. M. Burzo, A. V. Chugreev, and A. V. Sokolov, “Optimized control of generation of a few cycle pulses by molecular modulation,” Opt. Commun. 264, 454-462 (2006).
[CrossRef]

Couny, F.

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Evett, J. B.

J. B. Evett and C. Liu, Fundamentals of Fluid Mechanics (McGraw-Hill, 1987).

Farr, L.

Fedotov, A. B.

S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, “Phase-matched four-wave mixing and sensing of water molecules by coherent anti-stokes Raman scattering in large-core-area hollow photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2049-2053 (2005).
[CrossRef]

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004).
[CrossRef]

Fenner, W.

Geiser, P.

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

Goda, S. N.

Gregory, C. C.

Hald, J.

Han, Y.

Hansen, T. P.

Harris, S. E.

Henningsen, J.

Hou, L.-T.

Howdle, S. M.

Hyatt, H. A.

Kellam, J. M.

Knight, J.

Knight, J. C.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002).
[CrossRef] [PubMed]

Konorov, S. O.

Laufer, G.

R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-stokes Raman scattering in a hollow dielectric waveguide,” Appl. Phys. Lett. 30, 417-419 (1977).
[CrossRef]

Li, S.-G.

Liu, C.

J. B. Evett and C. Liu, Fundamentals of Fluid Mechanics (McGraw-Hill, 1987).

Liu, S.-Y.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).

Ludvigsen, H.

Mangan, B.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metal and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Mason, M.

McCreery, R. L.

Miles, R. B.

Mitrokhin, V. P.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004).
[CrossRef]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Paster, R.

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

Petersen, J. C.

Popov, V. K.

Porto, S. P. S.

Rastel, R.

M. J. Renn and R. Rastel, “Particle manipulation and surface patterning by laser guidance,” J. Vac. Sci. Technol. B 16, 3859-3863 (1998).
[CrossRef]

Rauh, D.

Renn, M. J.

M. J. Renn and R. Rastel, “Particle manipulation and surface patterning by laser guidance,” J. Vac. Sci. Technol. B 16, 3859-3863 (1998).
[CrossRef]

Rich, C.

Ringle, R.

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

Ritari, T.

Roberts, P.

Rogers, J.

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

Rohde, C.

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(5), 11-15 (October 2007).

P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News , 18(7), 26-31 (July/August 2007).

P. Russell, “Photonic crystal fibers,” Science 299, 358-362(2003).
[CrossRef] [PubMed]

Russell, P. St. J.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002).
[CrossRef] [PubMed]

Sabert, H.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metal and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Schulze, H. G.

Schwab, S. D.

Sensarn, S.

Serebryannikov, E. E.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004).
[CrossRef]

Simonsen, H. R.

Sokolov, A. V.

A. M. Burzo, A. V. Chugreev, and A. V. Sokolov, “Optimized control of generation of a few cycle pulses by molecular modulation,” Opt. Commun. 264, 454-462 (2006).
[CrossRef]

Song, Z.-Y.

Sorensen, T.

Spencer, K. M.

Stanley, K.

Sturthers, A.

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Tomlinson, A.

Tuominen, J.

Turner, R. F. B.

Williams, D.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

Yin, G. Y.

Zheltikov, A. M.

S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, “Phase-matched four-wave mixing and sensing of water molecules by coherent anti-stokes Raman scattering in large-core-area hollow photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2049-2053 (2005).
[CrossRef]

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004).
[CrossRef]

A. M. Zheltikov, “Ultrashort light pulses in hollow waveguides,” Phys. Usp. 45, 687-718 (2002).
[CrossRef]

Zhou, G.-Y.

Am. J. Phys.

R. Paster, A. Sturthers, R. Ringle, J. Rogers, C. Rohde, and P. Geiser, “Laser trapping of microscopic particles for undergraduate experiments,” Am. J. Phys. 68, 993-1001 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-stokes Raman scattering in a hollow dielectric waveguide,” Appl. Phys. Lett. 30, 417-419 (1977).
[CrossRef]

Appl. Spectrosc.

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metal and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

IEEE LEOS Newsletter

P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(5), 11-15 (October 2007).

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

M. J. Renn and R. Rastel, “Particle manipulation and surface patterning by laser guidance,” J. Vac. Sci. Technol. B 16, 3859-3863 (1998).
[CrossRef]

Opt. Commun.

A. M. Burzo, A. V. Chugreev, and A. V. Sokolov, “Optimized control of generation of a few cycle pulses by molecular modulation,” Opt. Commun. 264, 454-462 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News , 18(7), 26-31 (July/August 2007).

Phys. Rev. A

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802(2004).
[CrossRef]

Phys. Rev. Lett.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[CrossRef] [PubMed]

Phys. Usp.

A. M. Zheltikov, “Ultrashort light pulses in hollow waveguides,” Phys. Usp. 45, 687-718 (2002).
[CrossRef]

Science

P. Russell, “Photonic crystal fibers,” Science 299, 358-362(2003).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in a hydrogen filled hollow-core photonic crystal fiber,” Science 298, 399-402(2002).
[CrossRef] [PubMed]

Other

“RazorEdge long wave pass Raman filter,” http://www.semrock.com/Catalog/RamanEdgeFilter_spectra.htm

J. B. Evett and C. Liu, Fundamentals of Fluid Mechanics (McGraw-Hill, 1987).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

HC-580 HC-PBF datasheet, retrieved 1 June 2007 from http://www.crystal-fibre.com/datasheets/HC-580-01.pdf.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).

R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley-Interscience, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental gas Raman systems.

Fig. 2
Fig. 2

Raman spectra from (top) the HC-PBF system and (bottom) the free-space system . A signal intensity of 1   V corresponds to 10 5   count / s . The peaks near 560 and 585 nm are due to O 2 and N 2 Raman scattering.

Fig. 3
Fig. 3

HC-PBF Raman experimental system. A 514.5 nm Ar + laser beam, < 1   W TEM 00 , is focused by a 10 mm EFL aspheric singlet ( L 1 ) into an HC-580-01 HC-PBF. Inside a high-pressure gas chamber, the HC-PBF is butt coupled to a 110   μm core multimode fiber (MMF). The output from the multimode fiber is collimated (fiber collimator L 2 ), and argon laser light is removed by using holographic edge filter F. Lens L 3 (focal length 60 nm ) delivers the Stokes signal to a JY IHR550 Spectrometer (SPEC) and an EMI 9789A phototube (PMT).

Fig. 4
Fig. 4

Raman spectra of natural gas: top, 535 545 nm ; bottom, 600 610 nm . Identification of indicated spectral lines: A, 870 cm 1 propane; B, 1000 cm 1 ethane; C, 1060 cm 1 propane; D, 2883 cm 1 propane; E, 2895 cm 1 ethane; F, 2917 cm 1 methane; G, 2937 cm 1 propane; H, 2995 cm 1 ethane.

Fig. 5
Fig. 5

Measured Raman intensities of methane ( 2917 cm 1 ) and ethane ( 2995 cm 1 ) Raman lines with varying gas concentration. The straight lines are linear fits to the experimental points anchored at the zero intercept.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P s = σ D P L Ω 0 ,
P s = σ D H π ( 1 / ( 2 f # ) 2 ) P L .

Metrics