Abstract

We point out an important fundamental limitation associated with the dielectric ribbon waveguide described by Yeh et al. [Appl. Opt. 44, 5937 (2005)], which would restrict its practical use in ultrahigh- or terahertz-speed guided-wave applications, contrary to their underlying prediction, and we additionally point out a noteworthy inaccuracy in their introductory discussion.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44, 5937-5946 (2005).
    [CrossRef] [PubMed]
  2. C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
    [CrossRef] [PubMed]
  3. A. B. Carlson, Communication Systems: an Introduction to Signals and Noise in Electrical Communication (McGraw-Hill, 1986).
  4. C. A. Balanis, Advanced Engineering Electromagnetics(Wiley, 1989).
  5. C. Yeh, F. Shimabukuro, and J. Chu, “Dielectric ribbon waveguide: an optimum configuration for ultra-low-loss millimeter/submillimeter dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 38, 691-702 (1990).
    [CrossRef]
  6. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  7. R. Mendis, “THz waveguides: the evolution,” in Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006 (IEEE, 2006), paper WedC1-1, p. 367.
    [CrossRef]
  8. T.-I. Jeon, College of Engineering, Korea Maritime University, Korea (personal communication, 2006).
  9. R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
    [CrossRef]

2005 (2)

C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44, 5937-5946 (2005).
[CrossRef] [PubMed]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

2001 (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

2000 (1)

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

1990 (1)

C. Yeh, F. Shimabukuro, and J. Chu, “Dielectric ribbon waveguide: an optimum configuration for ultra-low-loss millimeter/submillimeter dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 38, 691-702 (1990).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics(Wiley, 1989).

Carlson, A. B.

A. B. Carlson, Communication Systems: an Introduction to Signals and Noise in Electrical Communication (McGraw-Hill, 1986).

Chu, J.

C. Yeh, F. Shimabukuro, and J. Chu, “Dielectric ribbon waveguide: an optimum configuration for ultra-low-loss millimeter/submillimeter dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 38, 691-702 (1990).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

Imbriale, W.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

Jamnejad, V.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

T.-I. Jeon, College of Engineering, Korea Maritime University, Korea (personal communication, 2006).

Manshadi, F.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

Mendis, R.

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

R. Mendis, “THz waveguides: the evolution,” in Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006 (IEEE, 2006), paper WedC1-1, p. 367.
[CrossRef]

Shimabukuro, F.

C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44, 5937-5946 (2005).
[CrossRef] [PubMed]

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

C. Yeh, F. Shimabukuro, and J. Chu, “Dielectric ribbon waveguide: an optimum configuration for ultra-low-loss millimeter/submillimeter dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 38, 691-702 (1990).
[CrossRef]

Siegel, P. H.

Stanton, P.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

Yeh, C.

C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44, 5937-5946 (2005).
[CrossRef] [PubMed]

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

C. Yeh, F. Shimabukuro, and J. Chu, “Dielectric ribbon waveguide: an optimum configuration for ultra-low-loss millimeter/submillimeter dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 38, 691-702 (1990).
[CrossRef]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444-446 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Yeh, F. Shimabukuro, and J. Chu, “Dielectric ribbon waveguide: an optimum configuration for ultra-low-loss millimeter/submillimeter dielectric waveguide,” IEEE Trans. Microw. Theory Tech. 38, 691-702 (1990).
[CrossRef]

Nature (1)

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimetre-submillimetre wavelengths using a ceramic ribbon,” Nature 404, 584-588(2000).
[CrossRef] [PubMed]

Other (4)

A. B. Carlson, Communication Systems: an Introduction to Signals and Noise in Electrical Communication (McGraw-Hill, 1986).

C. A. Balanis, Advanced Engineering Electromagnetics(Wiley, 1989).

R. Mendis, “THz waveguides: the evolution,” in Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006 (IEEE, 2006), paper WedC1-1, p. 367.
[CrossRef]

T.-I. Jeon, College of Engineering, Korea Maritime University, Korea (personal communication, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Subpicosecond input reference pulse with its THz-bandwidth amplitude spectrum shown inset. (b) Theoretically simulated pulse after propagating 1 mm of the alumina slab waveguide whose transverse cross section is shown inset.

Fig. 2
Fig. 2

Group-velocity dispersion of the TM 0 mode for a slab thickness of 19 μm and 0.0635 cm . Note the different frequency axes for the two curves.

Fig. 3
Fig. 3

Distribution of the guided power across the slab thickness (y direction) in one half of the slab at 1 THz (thick curve) and 2 THz (thin curve).

Fig. 4
Fig. 4

Simulated pulse after propagating 91 cm of an alumina slab waveguide with a thickness of 0.0635 cm , compared with the input GHz pulse (dotted curve).

Metrics