Abstract

Raman spectroscopy using a hollow optical fiber probe with a glass ball lens at the distal end is proposed for detection of early caries lesions. Raman spectroscopy on carious lesions of extracted teeth showed that the probe enables measurement with a high signal-to-noise ratio when combined with a ball lens with a high refractive index. The proposed probe and lens combination detects changes in Raman spectra caused by morphological differences between sound and carious enamel. We also obtained a high-contrast image of an early carious lesion by scanning the tooth surface with the probe.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
    [CrossRef] [PubMed]
  2. R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
    [PubMed]
  3. B. T. Amaechi and S. M. Higham, “Quantitative light-induced fluorescence: a potential tool for general dental assessment,” J. Biomed. Opt. 7, 7-13 (2002).
    [CrossRef] [PubMed]
  4. X. Q. Shi, U. Welander, and B. Angmar-Mansson, “Occlusal caries detection with Kavo DIAGNOdent and radiography: an in vitro comparison,” Caries Res. 34, 151-158 (2000).
    [CrossRef] [PubMed]
  5. W. Hill and V. Petrou, “Caries detection by diode laser Raman spectroscopy,” Appl. Spectrosc. 54, 795-799 (2000).
    [CrossRef]
  6. A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
    [CrossRef] [PubMed]
  7. Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
    [CrossRef] [PubMed]
  8. Y. Matsuura, S. Kino, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optic probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704-1708 (2007).
    [CrossRef]
  9. M. Nakazawa, Y. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Hollow polycarbonate fiber for Er:YAG laser light delivery,” Opt. Lett. 31, 1373-1375 (2006).
    [CrossRef] [PubMed]
  10. H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73, 1703-1710 (1994).
    [PubMed]
  11. G. Leroy, G. Penel, N. Leroy, and E. Bres, “Human tooth enamel: a Raman polarized approach,” Appl. Spectrosc. 56, 1030-1036 (2002).
    [CrossRef]

2007 (1)

Y. Matsuura, S. Kino, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optic probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704-1708 (2007).
[CrossRef]

2006 (1)

2005 (2)

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
[CrossRef] [PubMed]

2003 (1)

R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
[PubMed]

2002 (2)

B. T. Amaechi and S. M. Higham, “Quantitative light-induced fluorescence: a potential tool for general dental assessment,” J. Biomed. Opt. 7, 7-13 (2002).
[CrossRef] [PubMed]

G. Leroy, G. Penel, N. Leroy, and E. Bres, “Human tooth enamel: a Raman polarized approach,” Appl. Spectrosc. 56, 1030-1036 (2002).
[CrossRef]

2000 (2)

X. Q. Shi, U. Welander, and B. Angmar-Mansson, “Occlusal caries detection with Kavo DIAGNOdent and radiography: an in vitro comparison,” Caries Res. 34, 151-158 (2000).
[CrossRef] [PubMed]

W. Hill and V. Petrou, “Caries detection by diode laser Raman spectroscopy,” Appl. Spectrosc. 54, 795-799 (2000).
[CrossRef]

1997 (1)

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

1994 (1)

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73, 1703-1710 (1994).
[PubMed]

Amaechi, B. T.

B. T. Amaechi and S. M. Higham, “Quantitative light-induced fluorescence: a potential tool for general dental assessment,” J. Biomed. Opt. 7, 7-13 (2002).
[CrossRef] [PubMed]

Angmar-Mansson, B.

X. Q. Shi, U. Welander, and B. Angmar-Mansson, “Occlusal caries detection with Kavo DIAGNOdent and radiography: an in vitro comparison,” Caries Res. 34, 151-158 (2000).
[CrossRef] [PubMed]

Arends, J.

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73, 1703-1710 (1994).
[PubMed]

Bres, E.

Choo-Smith, L.-P. 'I.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Cleghorn, B.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Dong, C. C. S.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Driller, J.

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Elbaum, M.

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Greenebaum, M.

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Heinrich-Weltzien, R.

R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
[PubMed]

Hewko, M.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Higham, S. M.

B. T. Amaechi and S. M. Higham, “Quantitative light-induced fluorescence: a potential tool for general dental assessment,” J. Biomed. Opt. 7, 7-13 (2002).
[CrossRef] [PubMed]

Hill, W.

Iwai, K.

Josselin de Jong, E.

R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
[PubMed]

Katagiri, T.

Y. Matsuura, S. Kino, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optic probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704-1708 (2007).
[CrossRef]

Keem, S.

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Kino, S.

Y. Matsuura, S. Kino, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optic probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704-1708 (2007).
[CrossRef]

Ko, A. C.-T.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Komachi, Y.

Kühnisch, J.

R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
[PubMed]

Leonardi, L.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Leroy, G.

Leroy, N.

Matsuura, Y.

Miyagi, M.

Nakazawa, M.

Penel, G.

Petrou, V.

Sato, H.

Y. Matsuura, S. Kino, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optic probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704-1708 (2007).
[CrossRef]

Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
[CrossRef] [PubMed]

Schneiderman, A.

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Shi, X. Q.

X. Q. Shi, U. Welander, and B. Angmar-Mansson, “Occlusal caries detection with Kavo DIAGNOdent and radiography: an in vitro comparison,” Caries Res. 34, 151-158 (2000).
[CrossRef] [PubMed]

Shi, Y.

Shultz, T.

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

Sowa, M. G.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Stösser, L.

R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
[PubMed]

Tashiro, H.

Y. Matsuura, S. Kino, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optic probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704-1708 (2007).
[CrossRef]

Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942-2944 (2005).
[CrossRef] [PubMed]

Tsuda, H.

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73, 1703-1710 (1994).
[PubMed]

van der Veen, M.

R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
[PubMed]

Welander, U.

X. Q. Shi, U. Welander, and B. Angmar-Mansson, “Occlusal caries detection with Kavo DIAGNOdent and radiography: an in vitro comparison,” Caries Res. 34, 151-158 (2000).
[CrossRef] [PubMed]

Williams, P.

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

Appl. Spectrosc. (2)

Caries Res. (2)

A. Schneiderman, M. Elbaum, T. Shultz, S. Keem, M. Greenebaum, and J. Driller, “Assessment of dental caries with digital imaging fiber-optic transillumination (DIFOTI): in vitro study,” Caries Res. 31, 103-110 (1997).
[CrossRef] [PubMed]

X. Q. Shi, U. Welander, and B. Angmar-Mansson, “Occlusal caries detection with Kavo DIAGNOdent and radiography: an in vitro comparison,” Caries Res. 34, 151-158 (2000).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Matsuura, S. Kino, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optic probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704-1708 (2007).
[CrossRef]

J. Biomed. Opt. (2)

A. C.-T. Ko, L.-P. 'I. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[CrossRef] [PubMed]

B. T. Amaechi and S. M. Higham, “Quantitative light-induced fluorescence: a potential tool for general dental assessment,” J. Biomed. Opt. 7, 7-13 (2002).
[CrossRef] [PubMed]

J. Dent. Res. (1)

H. Tsuda and J. Arends, “Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites,” J. Dent. Res. 73, 1703-1710 (1994).
[PubMed]

Opt. Lett. (2)

Quintessence Int. (1)

R. Heinrich-Weltzien, J. Kühnisch, M. van der Veen, E. Josselin de Jong, and L. Stösser, “Quantitative light-induced fluorescence (QLF)--a potential method for the dental practitioner,” Quintessence Int. 34(3), 181-188 (2003).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup for Raman spectroscopy. NF, notch filter; LF, long-pass filter.

Fig. 2
Fig. 2

Raman spectra of a tooth surface, obtained by using a hollow optical fiber probe with a sapphire ball lens. A sapphire crystal spectrum is shown for comparison. The background baseline is subtracted.

Fig. 3
Fig. 3

Raman spectra measured with glass ball lenses and without a lens.

Fig. 4
Fig. 4

Raw spectra of sound and carious enamels.

Fig. 5
Fig. 5

Raman spectra of sound and carious enamels.

Fig. 6
Fig. 6

Differences in Raman spectra of enamels with different directions of excitation.

Fig. 7
Fig. 7

Detection index for diagnosis of caries by Raman spectroscopy and fluorescence.

Fig. 8
Fig. 8

(a) Photograph of early carious lesion observed under microscope and (b) Raman image of an early caries lesion observed by using a hollow optical fiber probe.

Metrics