Abstract

A dual-channel spectral imaging system with agile spectral band access and spectral bandwidth tuning capability is presented. A diffractive grating and an acousto-optic tunable filter (AOTF) are respectively used as spectral dispersion and spectral filtering elements for the two channels. A 4f spectral filtering channel using an adjustable slit is set up at the first diffraction order of the grating to realize coarse spectral band selection. The AOTF selectively filters the spectrum of the nondispersed zero order to realize fine spectral imaging. The spectral zooming function is achieved without increasing spectral frame number facilitating real-time spectral imaging operation. Feasibility of the spectral imaging has been demonstrated through preliminary experiments. Minimum 6nm spectral resolution and 1.2° field of view have been achieved. The real-time spectral imaging capable of wide spectral band operation without loosing desired fine spectral capability is particularly useful for a variety of defense, medical, and environmental monitoring applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. McCracken, “Infrared line scanning systems,” in Passive Electro-Optical Systems, IR & EO Systems Handbook, S.B.Campana ed. (SPIE, 1993), Vol. 2.
  2. R. Riesenberg and U. Dillner, “Hadamard imaging spectrometer with micro slit matrix,” Proc. SPIE 3753, 203-213(1999).
    [CrossRef]
  3. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50-60 (2000).
    [CrossRef]
  4. R. F. Horton, “Optical design for a high etendue imaging Fourier Transform spectrometer,” Proc. SPIE 2819, 300-315(1996).
    [CrossRef]
  5. J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698-6702 (1996).
    [CrossRef] [PubMed]
  6. G. Zhan, K. Oka, T. Lshigaki, and N. Baba, “Birefringent imaging spectrometer,” Appl. Opt. 41, 734-738 (2002).
    [CrossRef] [PubMed]
  7. C. Ye, “Wavelength-tunable spectral filters based on the optical rotatory dispersion effect,” Appl. Opt. 42, 4505-4513(2003).
    [CrossRef] [PubMed]
  8. D. R. Suhre and J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35, 4494-4501 (1996).
    [CrossRef] [PubMed]
  9. I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2-22 (1976).
  10. T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277-1279 (1991).
    [CrossRef] [PubMed]
  11. M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817-4826 (1995).
    [CrossRef] [PubMed]
  12. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854-856(2002).
    [CrossRef]
  13. J. D. Newman, M. W. Kowarz, J. G. Phalen, “MEMS programmable spectral imaging systems for remote sensing,” Proc. SPIE 6220, 622006 (2006).
    [CrossRef]
  14. B. Chen, M. R. Wang, Z. Liu, and J. J. Yang, “Dynamic spectral imaging with spectral zooming capability,” Opt. Lett. 32, 1518-1820 (2007).
    [CrossRef] [PubMed]
  15. Acousto-optic tunable filter, “TEAF-5-40-65,” http://www.brimrose.com.
  16. http://imgsrc.hubblesite.org/hu/db/1997/27/images/a/formats/print.jpg.

2007

2006

J. D. Newman, M. W. Kowarz, J. G. Phalen, “MEMS programmable spectral imaging systems for remote sensing,” Proc. SPIE 6220, 622006 (2006).
[CrossRef]

2003

2002

2000

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50-60 (2000).
[CrossRef]

1999

R. Riesenberg and U. Dillner, “Hadamard imaging spectrometer with micro slit matrix,” Proc. SPIE 3753, 203-213(1999).
[CrossRef]

1996

1995

1991

1976

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2-22 (1976).

Baba, N.

Barbastathis, G.

Chang, I. C.

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2-22 (1976).

Chen, B.

Courtial, J.

Dereniak, E.

Descour, M.

Dillner, U.

R. Riesenberg and U. Dillner, “Hadamard imaging spectrometer with micro slit matrix,” Proc. SPIE 3753, 203-213(1999).
[CrossRef]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50-60 (2000).
[CrossRef]

Harvey, A. R.

Horton, R. F.

R. F. Horton, “Optical design for a high etendue imaging Fourier Transform spectrometer,” Proc. SPIE 2819, 300-315(1996).
[CrossRef]

Kowarz, M. W.

J. D. Newman, M. W. Kowarz, J. G. Phalen, “MEMS programmable spectral imaging systems for remote sensing,” Proc. SPIE 6220, 622006 (2006).
[CrossRef]

Liu, W.

Liu, Z.

Lshigaki, T.

McCracken, W. L.

W. L. McCracken, “Infrared line scanning systems,” in Passive Electro-Optical Systems, IR & EO Systems Handbook, S.B.Campana ed. (SPIE, 1993), Vol. 2.

Newman, J. D.

J. D. Newman, M. W. Kowarz, J. G. Phalen, “MEMS programmable spectral imaging systems for remote sensing,” Proc. SPIE 6220, 622006 (2006).
[CrossRef]

Oka, K.

Okamoto, T.

Padgett, M. J.

Patterson, B. A.

Phalen, J. G.

J. D. Newman, M. W. Kowarz, J. G. Phalen, “MEMS programmable spectral imaging systems for remote sensing,” Proc. SPIE 6220, 622006 (2006).
[CrossRef]

Psaltis, D.

Riesenberg, R.

R. Riesenberg and U. Dillner, “Hadamard imaging spectrometer with micro slit matrix,” Proc. SPIE 3753, 203-213(1999).
[CrossRef]

Sibbett, W.

Suhre, D. R.

Theodore, J. G.

Wang, M. R.

Yamaguchi, I.

Yang, J. J.

Ye, C.

Zhan, G.

Appl. Opt.

IEEE Trans. Sonics Ultrason.

I. C. Chang, “Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. 23, 2-22 (1976).

Opt. Lett.

Proc. SPIE

J. D. Newman, M. W. Kowarz, J. G. Phalen, “MEMS programmable spectral imaging systems for remote sensing,” Proc. SPIE 6220, 622006 (2006).
[CrossRef]

R. Riesenberg and U. Dillner, “Hadamard imaging spectrometer with micro slit matrix,” Proc. SPIE 3753, 203-213(1999).
[CrossRef]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50-60 (2000).
[CrossRef]

R. F. Horton, “Optical design for a high etendue imaging Fourier Transform spectrometer,” Proc. SPIE 2819, 300-315(1996).
[CrossRef]

Other

Acousto-optic tunable filter, “TEAF-5-40-65,” http://www.brimrose.com.

http://imgsrc.hubblesite.org/hu/db/1997/27/images/a/formats/print.jpg.

W. L. McCracken, “Infrared line scanning systems,” in Passive Electro-Optical Systems, IR & EO Systems Handbook, S.B.Campana ed. (SPIE, 1993), Vol. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the dual-channel spectral imaging system.

Fig. 2
Fig. 2

Schematic layout of the 4 f spectral filtering subsystem.

Fig. 3
Fig. 3

Original image and spectral images acquired in the coarse spectral channel with a 1.4 mm slit width.

Fig. 4
Fig. 4

Spectral images acquired by the AOTF-based fine spectral channel in the range from 550 to 580 nm .

Fig. 5
Fig. 5

Comparison of fine and coarse spectral selection bandwidth (a) for images of Figs. 3e, 4d and (b) for images at center wavelength of 482 nm at the fixed slit width of 1.4 mm .

Fig. 6
Fig. 6

(a) Slit-width-dependent spectral selection bandwidth and (b) transmission curve at the center wavelength of 550 nm for the coarse spectral channel.

Fig. 7
Fig. 7

Resolution between the input converging angle and the minimum spectral width at a 550 nm center wavelength.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T ( u , v ) = J 1 ( m A 2 ) · exp ( j · 2 π · f A · u ) .
E ( ξ , η ) = J 1 ( m A 2 ) j λ · f · H ( f ξ , f η ) δ ( f ξ f A , f η ) = J 1 ( m A 2 ) j λ · f · H ( f ξ f A , f η ) ,
S ( ξ , η ) = rect ( ξ λ 0 · f · f A 2 D ) .
A ( x , y ) = C · λ 0 D f · f A λ 0 + D f · f A [ G ( x , y ) · T ( x , y ) ] [ sin c ( 2 D · x λ · f ) · exp ( j · 2 π · λ 0 · f A λ · x ) ] · d λ .
Δ λ = 1.8 π · λ 0 b · L · sin 2 θ i ,
f = V λ · n e ( θ i ) · sin ( θ i θ a ) · [ 1 ( 1 n e 2 n o 2 n e 2 · sin ( θ i θ a ) ) 1 / 2 ] ,

Metrics