Abstract

Fiber-optic single-point and quasi-distributed evanescent temperature sensors recoated with a blend of poly(methyl methacrylate) and poly(vinylidene fluoride) are proposed. Solid cladding enables the cons truction of small-size, low-cost, relatively wide-range and fast-response temperature sensors. The diameter of the sensor does not exceed the dimensions of the original optical fiber, while the response time of the sensor is 7.4ms. Different mass ratios of polymers in the blend enable fine tuning of the applied cladding’s refractive index. This allows the construction of sensors for different temperature ranges, while the application of all-silica graded-index multimode fibers enables the construction of quasi- distributed sensor systems with considerably reduced cross talk.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E 21, 652-656 (1988).
    [CrossRef]
  2. C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
    [CrossRef]
  3. V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133-139 (2004).
    [CrossRef]
  4. H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
    [CrossRef]
  5. D. Donlagic and M. Lesic, “All-fiber quasi-distributed polarimetric temperature sensor,” Opt. Express 14, 10245-10254(2006).
    [CrossRef] [PubMed]
  6. Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272, 227-237 (2007).
    [CrossRef]
  7. K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
    [CrossRef]
  8. X. K. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27, 1388-1390 (2002).
    [CrossRef]
  9. FISO Technologies Inc., “FOT HERO temperature sensor,” http://www.fiso.com/modules/AxialRealisation/img_repository/files/documents/2007/MC-00008%20R12_PDS_FOT-HERO.pdf.
  10. Acreo AB, “High temperature FBG sensors,” http://www.acreo.se/templates/Page____1013.aspx.
  11. A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
    [CrossRef]
  12. G. Betta, A. Pietrosanto, and A. Scaglione, “An enhanced fiber-optic temperature sensor system for power transformer monitoring,” IEEE Trans. Instrum. Meas. 50, 1138-1143 (2001).
    [CrossRef]
  13. G. Betta, A. Pietrosanto, and A. Scaglione, “Temperature measurement by multifiber optical sensor,” IEEE Trans. Instrum. Meas. 49, 1004-1008 (2000).
    [CrossRef]
  14. M. Gottlieb and G. B. Brandt, “Temperature sensing in optical fibers using cladding and jacket loss effects,” Appl. Opt. 20, 3867-3873 (1981).
    [CrossRef] [PubMed]
  15. S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17, 2706-2708 (2005).
    [CrossRef]
  16. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000).
    [CrossRef]
  17. S. Lacroix, R. J. Black, C. Veilleux, and J. Lapierre, “Tapered single-mode fibers: external refractive-index dependence,” Appl. Opt. 25, 2468-2469 (1986).
    [CrossRef] [PubMed]
  18. W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
    [CrossRef]
  19. M. Kezmah and D. Donlagic, “Multimode all-fiber quasi-distributed refractometer sensor array and cross-talk mitigation,” Appl. Opt. 46, 4081-4091 (2007).
    [CrossRef] [PubMed]
  20. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
    [CrossRef]
  21. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289-7292 (1998).
    [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

2007 (2)

Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272, 227-237 (2007).
[CrossRef]

M. Kezmah and D. Donlagic, “Multimode all-fiber quasi-distributed refractometer sensor array and cross-talk mitigation,” Appl. Opt. 46, 4081-4091 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17, 2706-2708 (2005).
[CrossRef]

2004 (2)

W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
[CrossRef]

V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133-139 (2004).
[CrossRef]

2003 (2)

C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
[CrossRef]

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
[CrossRef]

2002 (3)

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
[CrossRef]

X. K. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27, 1388-1390 (2002).
[CrossRef]

2001 (1)

G. Betta, A. Pietrosanto, and A. Scaglione, “An enhanced fiber-optic temperature sensor system for power transformer monitoring,” IEEE Trans. Instrum. Meas. 50, 1138-1143 (2001).
[CrossRef]

2000 (2)

G. Betta, A. Pietrosanto, and A. Scaglione, “Temperature measurement by multifiber optical sensor,” IEEE Trans. Instrum. Meas. 49, 1004-1008 (2000).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000).
[CrossRef]

1998 (1)

1988 (1)

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E 21, 652-656 (1988).
[CrossRef]

1986 (1)

1981 (1)

Abdelghani, A.

K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
[CrossRef]

Aizawa, H.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Arregui, F. J.

C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000).
[CrossRef]

Asakura, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

Auza, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
[CrossRef]

Bariain, C.

C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000).
[CrossRef]

Betta, G.

G. Betta, A. Pietrosanto, and A. Scaglione, “An enhanced fiber-optic temperature sensor system for power transformer monitoring,” IEEE Trans. Instrum. Meas. 50, 1138-1143 (2001).
[CrossRef]

G. Betta, A. Pietrosanto, and A. Scaglione, “Temperature measurement by multifiber optical sensor,” IEEE Trans. Instrum. Meas. 49, 1004-1008 (2000).
[CrossRef]

Black, R. J.

Brandt, G. B.

Chandani, S. M.

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17, 2706-2708 (2005).
[CrossRef]

Cherif, K.

K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
[CrossRef]

Donlagic, D.

Egozkue, E.

C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
[CrossRef]

Endo, A.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Ewald, H.

W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
[CrossRef]

Fernandez-Valdivielso, C.

C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
[CrossRef]

Flanagan, C.

W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
[CrossRef]

Friberg, A. T.

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E 21, 652-656 (1988).
[CrossRef]

Gaston, A.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
[CrossRef]

Gong, Y. D.

Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272, 227-237 (2007).
[CrossRef]

Gottlieb, M.

Hakamada, A.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Hasegawa, T.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

Hleli, S.

K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
[CrossRef]

Jaeger, N. A. F.

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17, 2706-2708 (2005).
[CrossRef]

Jaffrezic-Renault, N.

K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
[CrossRef]

Kajanto, I.

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E 21, 652-656 (1988).
[CrossRef]

Katsumata, T.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Kezmah, M.

Komuro, S.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Lacroix, S.

Lambelet, P.

Lapierre, J.

Lesic, M.

Lewis, E.

W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
[CrossRef]

Lochmann, S.

W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
[CrossRef]

López, V.

V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133-139 (2004).
[CrossRef]

Lopez-Amo, M.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Lozano, I.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
[CrossRef]

Lyons, W. B.

W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
[CrossRef]

Marquis-Weible, F.

Matejec, V.

K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
[CrossRef]

Matias, I. R.

C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
[CrossRef]

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000).
[CrossRef]

Morikawa, T.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Murayama, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

Nakagawa, H.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

Ogawa, S.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Ohishi, N.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Okazaki, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

Paez, G.

V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133-139 (2004).
[CrossRef]

Perez, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
[CrossRef]

Pfeffer, M.

Philipona, C.

Pietrosanto, A.

G. Betta, A. Pietrosanto, and A. Scaglione, “An enhanced fiber-optic temperature sensor system for power transformer monitoring,” IEEE Trans. Instrum. Meas. 50, 1138-1143 (2001).
[CrossRef]

G. Betta, A. Pietrosanto, and A. Scaglione, “Temperature measurement by multifiber optical sensor,” IEEE Trans. Instrum. Meas. 49, 1004-1008 (2000).
[CrossRef]

Sayah, A.

Scaglione, A.

G. Betta, A. Pietrosanto, and A. Scaglione, “An enhanced fiber-optic temperature sensor system for power transformer monitoring,” IEEE Trans. Instrum. Meas. 50, 1138-1143 (2001).
[CrossRef]

G. Betta, A. Pietrosanto, and A. Scaglione, “Temperature measurement by multifiber optical sensor,” IEEE Trans. Instrum. Meas. 49, 1004-1008 (2000).
[CrossRef]

Sevilla, J.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Strojnik, M.

V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133-139 (2004).
[CrossRef]

Sumida, S.

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

Taylor, H. F.

Toba, E.

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

Veilleux, C.

Wan, X. K.

Appl. Opt. (4)

IEEE Photonics Technol. Lett. (1)

S. M. Chandani and N. A. F. Jaeger, “Fiber-optic temperature sensor using evanescent fields in D fibers,” IEEE Photonics Technol. Lett. 17, 2706-2708 (2005).
[CrossRef]

IEEE Sens. J. (1)

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity and pH sensors),” IEEE Sens. J. 3, 806-811 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

G. Betta, A. Pietrosanto, and A. Scaglione, “An enhanced fiber-optic temperature sensor system for power transformer monitoring,” IEEE Trans. Instrum. Meas. 50, 1138-1143 (2001).
[CrossRef]

G. Betta, A. Pietrosanto, and A. Scaglione, “Temperature measurement by multifiber optical sensor,” IEEE Trans. Instrum. Meas. 49, 1004-1008 (2000).
[CrossRef]

Infrared Phys. Technol. (1)

V. López, G. Paez, and M. Strojnik, “Sensitivity of a temperature sensor, employing ratio of fluorescence power in a band,” Infrared Phys. Technol. 46, 133-139 (2004).
[CrossRef]

J. Phys. E (1)

I. Kajanto and A. T. Friberg, “A silicon-based fibre-optic temperature sensor,” J. Phys. E 21, 652-656 (1988).
[CrossRef]

Opt. Commun. (1)

Y. D. Gong, “Guideline for the design of a fiber optic distributed temperature and strain sensor,” Opt. Commun. 272, 227-237 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators A, Phys. (2)

H. Aizawa, N. Ohishi, S. Ogawa, A. Endo, A. Hakamada, T. Katsumata, S. Komuro, T. Morikawa, and E. Toba, “Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications,” Sens. Actuators A, Phys. 101, 42-48 (2002).
[CrossRef]

W. B. Lyons, C. Flanagan, E. Lewis, H. Ewald, and S. Lochmann, “Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques,” Sens. Actuators A, Phys. 114, 7-12 (2004).
[CrossRef]

Sens. Actuators B, Chem. (2)

S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, “Distributed hydrogen determination with fiber-optic sensor,” Sens. Actuators B, Chem. 108, 508-514 (2005).
[CrossRef]

C. Fernandez-Valdivielso, E. Egozkue, I. R. Matias, F. J. Arregui, and C. Bariain, “Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications,” Sens. Actuators B, Chem. 91, 231-240 (2003).
[CrossRef]

Sens.Actuators B, Chem. (1)

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on tapered fiber coated with agarose gel,” Sens.Actuators B, Chem. 69, 127-131 (2000).
[CrossRef]

Sensors (1)

K. Cherif, S. Hleli, A. Abdelghani, N. Jaffrezic-Renault, and V. Matejec, “Chemical detection in liquid media with a refractometric sensor based on a multimode optical fibre,” Sensors 2, 195-204 (2002).
[CrossRef]

Other (3)

FISO Technologies Inc., “FOT HERO temperature sensor,” http://www.fiso.com/modules/AxialRealisation/img_repository/files/documents/2007/MC-00008%20R12_PDS_FOT-HERO.pdf.

Acreo AB, “High temperature FBG sensors,” http://www.acreo.se/templates/Page____1013.aspx.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Single-point sensor and a sensor for a quasi-distributed system.

Fig. 2
Fig. 2

Power loss during the etching process.

Fig. 3
Fig. 3

Porous polymer coating.

Fig. 4
Fig. 4

Clear and transparent polymer coating.

Fig. 5
Fig. 5

Single-point sensor measurement setup.

Fig. 6
Fig. 6

Optical power-dependent temperature characteristic for the realized sensors.

Fig. 7
Fig. 7

Step response of a temperature sensor.

Fig. 8
Fig. 8

Cross section of the sensor.

Fig. 9
Fig. 9

Sensor with the applied polymer.

Fig. 10
Fig. 10

Sensor is protected with an additional protective cladding.

Fig. 11
Fig. 11

Quasi-distributed temperature measurement system.

Fig. 12
Fig. 12

Evaluation of a quasi-distributed system.

Fig. 13
Fig. 13

Temperature characteristic of a single sensor in the network.

Tables (2)

Tables Icon

Table 1 Properties of PMMA and PVDF

Tables Icon

Table 2 PMMA PVDF Mass Ratios for Different Coatings

Metrics