Abstract

1Tbyte of data has been recorded in 200 layers inside the volume of one of our two-photon 3D disks. Each layer contains 5Gb of data similar to the capacity of a single layer DVD. The results obtained with our high-performance 1.0 numerical aperture (NA) objective lens show a full disk recording of 1Tbyte within a standard optical disk form factor 120mm×1.2mm thick utilizing our very stable and efficient materials. Very high sensitivity materials are recorded with bit energies as low as 250pJ/bit. Materials sensitive at 405nm are experimentally tested by recording with a 405nm Nichia laser diode. Results show that bit dimensions are further reduced, which enables future recordings of 5Tbyte disk capacities by recording 25Gb/layer, the equivalent of a Blu-ray disk capacity per layer.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G/1-63350G/6(2006).
  2. A.S. Matharu, S. Jeeva, and P. S. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
    [CrossRef] [PubMed]
  3. D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843-845(1989).
    [CrossRef] [PubMed]
  4. A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).
  5. Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, “Synthesis of novel photochromic fluorescing 2-indolylfulgimides,” Tetrahedron Lett. 40, 8067-8069 (1999).
    [CrossRef]
  6. A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, “Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies,” Proc. SPIE 6308, 630802 (2006).
    [CrossRef]
  7. M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, “Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives,” J. Photochem. Photobiol. A 190, 69-76(2007).
    [CrossRef]
  8. A. S. Dvornikov, Y. Liang, and P. M. Rentzepis, “Dependence of the fluorescence of a composite photochromic molecule on a structure and viscosity,” J. Mater. Chem. 15, 1072-1078(2005).
    [CrossRef]
  9. Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
    [CrossRef]
  10. A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, “Ultra high density non-destructive readout, rewritable molecular memory,” Res. Chem. Intermed. 30, 4-5545-561 (2004).
    [CrossRef]
  11. A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, “Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems,” J. Phys. Chem. B 108, 8652-8658 (2004).
    [CrossRef]
  12. E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15, 12264-12276 (2007).
    [CrossRef] [PubMed]
  13. E. P. Walker and T. D. Milster, “Beam shaping for optical data storage,” in Laser Beam Shaping Applications F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds. (CRC Press Taylor & Francis Group, 2006), pp. 157-181.
  14. H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
    [CrossRef]
  15. E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

2007 (3)

A.S. Matharu, S. Jeeva, and P. S. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, “Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives,” J. Photochem. Photobiol. A 190, 69-76(2007).
[CrossRef]

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15, 12264-12276 (2007).
[CrossRef] [PubMed]

2006 (3)

E. P. Walker and T. D. Milster, “Beam shaping for optical data storage,” in Laser Beam Shaping Applications F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds. (CRC Press Taylor & Francis Group, 2006), pp. 157-181.

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, “Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies,” Proc. SPIE 6308, 630802 (2006).
[CrossRef]

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G/1-63350G/6(2006).

2005 (1)

A. S. Dvornikov, Y. Liang, and P. M. Rentzepis, “Dependence of the fluorescence of a composite photochromic molecule on a structure and viscosity,” J. Mater. Chem. 15, 1072-1078(2005).
[CrossRef]

2004 (3)

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, “Ultra high density non-destructive readout, rewritable molecular memory,” Res. Chem. Intermed. 30, 4-5545-561 (2004).
[CrossRef]

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, “Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems,” J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

2002 (1)

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

2000 (1)

H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
[CrossRef]

1999 (1)

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, “Synthesis of novel photochromic fluorescing 2-indolylfulgimides,” Tetrahedron Lett. 40, 8067-8069 (1999).
[CrossRef]

1997 (1)

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843-845(1989).
[CrossRef] [PubMed]

Akiba, M.

M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, “Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives,” J. Photochem. Photobiol. A 190, 69-76(2007).
[CrossRef]

Coblentz, K.

Cokgor, I.

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

Cruse, C. S.

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, “Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems,” J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

Curtis, K. R.

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G/1-63350G/6(2006).

Dhar, L.

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G/1-63350G/6(2006).

Dvornikov, A.

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15, 12264-12276 (2007).
[CrossRef] [PubMed]

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
[CrossRef]

Dvornikov, A. S.

M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, “Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives,” J. Photochem. Photobiol. A 190, 69-76(2007).
[CrossRef]

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, “Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies,” Proc. SPIE 6308, 630802 (2006).
[CrossRef]

A. S. Dvornikov, Y. Liang, and P. M. Rentzepis, “Dependence of the fluorescence of a composite photochromic molecule on a structure and viscosity,” J. Mater. Chem. 15, 1072-1078(2005).
[CrossRef]

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, “Ultra high density non-destructive readout, rewritable molecular memory,” Res. Chem. Intermed. 30, 4-5545-561 (2004).
[CrossRef]

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, “Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems,” J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, “Synthesis of novel photochromic fluorescing 2-indolylfulgimides,” Tetrahedron Lett. 40, 8067-8069 (1999).
[CrossRef]

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

Esener, S.

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15, 12264-12276 (2007).
[CrossRef] [PubMed]

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

Esener, S. E.

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

Feng, W.

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

Jeeva, S.

A.S. Matharu, S. Jeeva, and P. S. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

Kim, N.

H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
[CrossRef]

Liang, Y.

A. S. Dvornikov, Y. Liang, and P. M. Rentzepis, “Dependence of the fluorescence of a composite photochromic molecule on a structure and viscosity,” J. Mater. Chem. 15, 1072-1078(2005).
[CrossRef]

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, “Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems,” J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, “Synthesis of novel photochromic fluorescing 2-indolylfulgimides,” Tetrahedron Lett. 40, 8067-8069 (1999).
[CrossRef]

Liang, Y. C.

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, “Ultra high density non-destructive readout, rewritable molecular memory,” Res. Chem. Intermed. 30, 4-5545-561 (2004).
[CrossRef]

Matharu, S.

A.S. Matharu, S. Jeeva, and P. S. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

McCormick, F.

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

McCormick, F. B.

H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
[CrossRef]

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

Milster, T. D.

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, “Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies,” Proc. SPIE 6308, 630802 (2006).
[CrossRef]

E. P. Walker and T. D. Milster, “Beam shaping for optical data storage,” in Laser Beam Shaping Applications F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds. (CRC Press Taylor & Francis Group, 2006), pp. 157-181.

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843-845(1989).
[CrossRef] [PubMed]

Ramanujam, P. S.

A.S. Matharu, S. Jeeva, and P. S. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

Rentzepis, P.

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15, 12264-12276 (2007).
[CrossRef] [PubMed]

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

Rentzepis, P. M.

M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, “Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives,” J. Photochem. Photobiol. A 190, 69-76(2007).
[CrossRef]

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, “Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies,” Proc. SPIE 6308, 630802 (2006).
[CrossRef]

A. S. Dvornikov, Y. Liang, and P. M. Rentzepis, “Dependence of the fluorescence of a composite photochromic molecule on a structure and viscosity,” J. Mater. Chem. 15, 1072-1078(2005).
[CrossRef]

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, “Ultra high density non-destructive readout, rewritable molecular memory,” Res. Chem. Intermed. 30, 4-5545-561 (2004).
[CrossRef]

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, “Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems,” J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, “Synthesis of novel photochromic fluorescing 2-indolylfulgimides,” Tetrahedron Lett. 40, 8067-8069 (1999).
[CrossRef]

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843-845(1989).
[CrossRef] [PubMed]

Taketomi, Y.

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

Walker, E.

E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P. Rentzepis, “Toward terabyte two-photon 3D disk,” Opt. Express 15, 12264-12276 (2007).
[CrossRef] [PubMed]

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, “Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies,” Proc. SPIE 6308, 630802 (2006).
[CrossRef]

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
[CrossRef]

Walker, E. P.

E. P. Walker and T. D. Milster, “Beam shaping for optical data storage,” in Laser Beam Shaping Applications F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds. (CRC Press Taylor & Francis Group, 2006), pp. 157-181.

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

Wang, M.

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

Wilson, W. L.

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G/1-63350G/6(2006).

Zhang, H.

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
[CrossRef]

Zhang, Y.

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

Chem. Soc. Rev. (1)

A.S. Matharu, S. Jeeva, and P. S. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

IEEE Trans. Compon. Packaging Manuf. Technol. A (1)

A. S. Dvornikov, I. Cokgor, M. Wang, F. B. McCormick, S. E. Esener, and P. M. Rentzepis, “Materials and systems for two photon 3D ROM device,” IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 200-212 (1997).

J. Mater. Chem. (1)

A. S. Dvornikov, Y. Liang, and P. M. Rentzepis, “Dependence of the fluorescence of a composite photochromic molecule on a structure and viscosity,” J. Mater. Chem. 15, 1072-1078(2005).
[CrossRef]

J. Photochem. Photobiol. A (1)

M. Akiba, A. S. Dvornikov, and P. M. Rentzepis, “Formation of oxazine dye by photochemical reaction of N-acyl oxazine derivatives,” J. Photochem. Photobiol. A 190, 69-76(2007).
[CrossRef]

J. Phys. Chem. B (1)

A. S. Dvornikov, Y. Liang, C. S. Cruse, and P. M. Rentzepis, “Spectroscopy and kinetics of a molecular memory with non-destructive readout for use in 2D and 3D storage systems,” J. Phys. Chem. B 108, 8652-8658 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (4)

H. Zhang, A. Dvornikov, E. Walker, N. Kim, and F. B. McCormick, “Single-beam two-photon-recorded monolithic multi-layer optical disks,” Proc. SPIE 4090, 174-178(2000).
[CrossRef]

Y. Zhang, A. Dvornikov, Y. Taketomi, E. P. Walker, P. Rentzepis, and S. Esener, “Towards ultra high density multi-layer disk recording by two-photon absorption,” Proc. SPIE 5362, 1-9 (2004).
[CrossRef]

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G/1-63350G/6(2006).

A. S. Dvornikov, T. D. Milster, E. Walker, and P. M. Rentzepis, “Two-photon 3D high-density optical storage media: optical properties, temperature, radiation, and fatigue studies,” Proc. SPIE 6308, 630802 (2006).
[CrossRef]

Res. Chem. Intermed. (1)

A. S. Dvornikov, Y. C. Liang, and P. M. Rentzepis, “Ultra high density non-destructive readout, rewritable molecular memory,” Res. Chem. Intermed. 30, 4-5545-561 (2004).
[CrossRef]

Science (1)

D. A. Parthenopoulos and P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843-845(1989).
[CrossRef] [PubMed]

Tetrahedron Lett. (1)

Y. Liang, A. S. Dvornikov, and P. M. Rentzepis, “Synthesis of novel photochromic fluorescing 2-indolylfulgimides,” Tetrahedron Lett. 40, 8067-8069 (1999).
[CrossRef]

Other (2)

E. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, and S. Esener, “3-D parallel readout in a 3-D multilayer optical data storage system,” ISOM/ODS meeting Hawaii (2002) paper # TuB4.

E. P. Walker and T. D. Milster, “Beam shaping for optical data storage,” in Laser Beam Shaping Applications F. M. Dickey, S. C. Holswade, and D. L. Shealy, eds. (CRC Press Taylor & Francis Group, 2006), pp. 157-181.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Energy band diagram picture of the single laser beam two-photon 3D recording.

Fig. 2
Fig. 2

Spectra and structures of the DP and the photoinduced, written form, dye molecules.

Fig. 3
Fig. 3

Absorption spectra and structures of PAGs

Fig. 4
Fig. 4

(a) Single-beam two-photon recording system diagram and (b) photo of experimental system.

Fig. 5
Fig. 5

(a) Layout of tracks and zones in table form and (b) pictorial layout for a zoned CLV (constant linear velocity) approach to maximize layer capacity in a 120 mm diameter disk recording having a capacity of 1 Tbyte with a track pitch of 0.8 μm , layer pitch 5 μm , and 200 layers.

Fig. 6
Fig. 6

Photograph of a 120 mm diameter disk after recording.

Fig. 7
Fig. 7

(a) Typical x y confocal microscope scan throughout the different layers and (b)  x z confocal microscope scan of 30 layers. Track pitch of 0.8 μm and layer spacing of 5 μm recorded in the 120 mm diameter disk recorded at 7 nJ / bit from a single pulse of a 75 MHz repetition rate laser.

Fig. 8
Fig. 8

Oscilloscope traces and spectrum of the signal of some of the test patterns recorded (a) 2T test pattern and (b) 3T test pattern.

Fig. 9
Fig. 9

Confocal images of bits recorded with the 532 HighQLaser system with 20 mW of average power, the energy/bit is 250 pJ or a 20 × improvement from the (a)  6 nJ full output pulse energy ( 450 mW average power), (b)  x y scan, and x z scan.

Fig. 10
Fig. 10

Confocal x y and x z scans of 405 nm laser diode recordings showing 0.5 μm lateral resolution as expected from diffraction limit and good z resolution.

Metrics