Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

C. H. Li, W. K. George, P. W. Zhai, and P. Yang, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13, 4554-4559 (2005).

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).

[CrossRef]

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implementing the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738-3746 (2004).

[CrossRef]

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).

[CrossRef]

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).

[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999).

[CrossRef]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230-235 (1999).

[CrossRef]

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

J. R. Basford, “Low intensity laser therapy: still not an established clinical tool,” Lasers Surg. Med. 16, 331-342 (1995).

[CrossRef]

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).

[CrossRef]

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).

[CrossRef]

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).

[CrossRef]

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).

[CrossRef]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).

[CrossRef]

J. R. Basford, “Low intensity laser therapy: still not an established clinical tool,” Lasers Surg. Med. 16, 331-342 (1995).

[CrossRef]

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).

[CrossRef]

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).

[CrossRef]

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).

[CrossRef]

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230-235 (1999).

[CrossRef]

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).

[CrossRef]

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).

[CrossRef]

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).

[CrossRef]

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).

[CrossRef]

G. J. Streekstra, A. G. Hoekstra, E. -J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266-2272 (1993).

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).

[CrossRef]

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).

[CrossRef]

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230-235 (1999).

[CrossRef]

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).

[CrossRef]

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).

[CrossRef]

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).

[CrossRef]

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).

[CrossRef]

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).

[CrossRef]

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230-235 (1999).

[CrossRef]

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).

[CrossRef]

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).

[CrossRef]

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

C. H. Li, W. K. George, P. W. Zhai, and P. Yang, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13, 4554-4559 (2005).

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implementing the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738-3746 (2004).

[CrossRef]

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

C. H. Li, W. K. George, P. W. Zhai, and P. Yang, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13, 4554-4559 (2005).

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implementing the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738-3746 (2004).

[CrossRef]

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

T. Lundeberg and M. Malen, “Low power He-Ne laser treatment of venous leg ulcers,” Ann. Plast. Surg. 27, 535-537 (1991).

J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027-4033 (1988).

G. J. Streekstra, A. G. Hoekstra, E. -J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32, 2266-2272 (1993).

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999).

[CrossRef]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999).

[CrossRef]

A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38, 230-235 (1999).

[CrossRef]

P. W. Zhai, Y. K. Lee, G. W. Kattawar, and P. Yang, “Implementing the near- to far-field transformation in the finite-difference time-domain method,” Appl. Opt. 43, 3738-3746 (2004).

[CrossRef]

M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44, 5249-5256 (2005).

[CrossRef]

F. Bordi, C. Cametti, A. D. Biasio, M. Angenetti, and L. Sparapani, “Quasi-elastic scattering from large anisotropic particles: application to the red blood cells,” Bioelectrochem. Bioenerg. 52, 213-221 (2000).

[CrossRef]

Z. H. Xie, M. Yang, and C. L. Zhang, “Effects of intravascular low level laser irradiation therapy on T lymphocyte subpopulations in patients with psoriasis,” Chin. J. Laser Med. Surg. 12, 40-42 (2003).

X. L. Xiao, X. P. Liang, X. C. Xiao, and X. P. Hong, “Therapeutic effect of intravascular laser irradiation on blood on the elderly patients with rheumatoid arthritis,” Chin. J. Phys. Med. Ther. 25, 174-176 (2003).

X. Z. Li, M. X. Li, and Y. F. Wang, “He-Ne laser intravascular irradiation therapy in the treatment of 55 cases with acute cerebral infarction,” Chin. J. Phys. Ther. 21, 17-19 (1998).

T. I. Karu, N. I. Afanasyeva, S. F. Kolyakov, L. V. Pyatibrat, and L. Welser, “Changes in absorbance of monolayer of living cells induced by laser radiation at 633, 670, and 820 nm,” IEEE J. Sel. Top. Quantum Electron. 7, 982-988 (2001).

[CrossRef]

A. Karlsson, J. P. He, J. Swartling, and S. Andersson-Engels, “Numerical simulation of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52, 13-18 (2005).

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10, 024022 (2005).

J. T. Yu, J. Y. Chen, Z. F. Lin, L. Xu, P. N. Wang, and M. Gu, “Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation,” J. Biomed. Opt. 10, 064013 (2005).

M. Schaffer, H. Bonel, S. Sroka, P. M. Schaffer, M. Busch, M. Reiser, and E. Duhmke, “Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary finding on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI),” J. Photochem. Photobiol. B 54, 55-60 (2000).

X. Q. Mi, J. Y. Chen, Y. Cen, Z. J. Liang, and L. W. Zhou, “A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro,” J. Photochem. Photobiol. B 74, 7-12 (2004).

Z. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” J. Photochem. Photobiol. B 83, 146-150 (2006).

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of light scattering by erythrocyte based on discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 244, 15-23 (2005).

T. Wriedt, J. Hellmers, E. Eremina, and R. Schuh, “Light scattering by single erythrocyte: comparison of different methods,” J. Quant. Spectrosc. Radiat. Transfer 100, 444-456(2006).

E. Eremina, J. Hellmers, Y. Eremin, and T. Wriedt, “Different shape modes for erythrocyte: light scattering analysis based on the discrete sources method,” J.Quant. Spectrosc. Radiat. Transfer 102, 3-10 (2006).

Y. Cen and J. Y. Chen, “Photohemolysis of erythrocytes by He-Ne laser irradiation: the effect of power density,” Lasers Med. Sci. 19, 161-164 (2004).

H. H. F. I. Van Bueregel and P. R. Dop Bar, “Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo biomodulation of human fibroblast in vitro,” Lasers Surg. Med. 12, 528-537 (1992).

[CrossRef]

E. Mester, A. F. Mester and A. Mester, “The biomedical effects of laser application,” Lasers Surg. Med. 5, 31-39 (1985).

[CrossRef]

J. R. Basford, “Low intensity laser therapy: still not an established clinical tool,” Lasers Surg. Med. 16, 331-342 (1995).

[CrossRef]

E. Evans and Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335-347 (1972).

[CrossRef]