Abstract

We have improved the resolution of our laser optical feedback imaging (LOFI) setup by using a galvanometric scanning and two-dimensional angular synthetic aperture (SA) process. The experimental resolution of the classical LOFI images and of the SA LOFI images are compared for different working distances, and we show that the SA LOFI method is able to balance the degradation of the images resolution with increasing distance. We also show that the resolution of the SA LOFI images can be controlled by choosing the position of the galvanometric scanner between the laser and the target under investigation. Theoretical and experimental SA resolutions are compared.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, 1991).
  2. R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, 1970).
  3. A. Ja. Pasmurov and J. S. Zimoview, Radar Imaging and Holography (Institution of Electrical Engineers, 2005).
  4. T. S. Lewis and H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781-1782 (1970).
    [CrossRef]
  5. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).
  6. S. Markus, B. D. Colella, and T. J. Green, Jr., “Solid-state laser synthetic aperture radar,” Appl. Opt. 33, 960-964(1994).
  7. A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Synthetic aperture laser optical feedback imaging using galvanometric scanning,” Opt. Lett. 31, 3031-3033 (2006).
    [CrossRef]
  8. M. Bashkansky, R. L. Lucke, E. Funk, L. J. Rickard, and J. Reintjes, “Two-dimensional synthetic aperture imaging in the optical domain,” Opt. Lett. 27, 1983-1985 (2002).
    [CrossRef]
  9. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44, 7621-7629 (2005).
    [CrossRef]
  10. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
    [CrossRef]
  11. K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33, 1111-1114(1994).
  12. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
    [CrossRef]
  13. A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning,” Appl. Opt. 47, 860-869(2008).
    [CrossRef]
  14. O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
    [CrossRef]
  15. V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005).
    [CrossRef]
  16. A. Papoulis, Signal Analysis (McGraw-Hill, 1977), pp. 262-272.
  17. D. Park and J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” Proc. SPIE 999, 100-116(1989).

2008 (2)

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning,” Appl. Opt. 47, 860-869(2008).
[CrossRef]

2006 (1)

2005 (3)

S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44, 7621-7629 (2005).
[CrossRef]

V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005).
[CrossRef]

A. Ja. Pasmurov and J. S. Zimoview, Radar Imaging and Holography (Institution of Electrical Engineers, 2005).

2002 (1)

2001 (1)

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

1999 (1)

1994 (2)

1991 (1)

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, 1991).

1989 (1)

D. Park and J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” Proc. SPIE 999, 100-116(1989).

1987 (1)

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

1977 (1)

A. Papoulis, Signal Analysis (McGraw-Hill, 1977), pp. 262-272.

1970 (2)

R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, 1970).

T. S. Lewis and H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781-1782 (1970).
[CrossRef]

Abshier, J. O.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Accetta, J. S.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Aleksoff, C. C.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Bashkansky, M.

Beck, S. M.

Buck, J. R.

Buell, W. F.

Colella, B. D.

Curlander, J. C.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, 1991).

Day, R.

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
[CrossRef]

Dickinson, R. P.

Fee, M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Funk, E.

Green, T. J.

Guillard, Y.

V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005).
[CrossRef]

Harger, R. O.

R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, 1970).

Hugon, O.

A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning,” Appl. Opt. 47, 860-869(2008).
[CrossRef]

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Synthetic aperture laser optical feedback imaging using galvanometric scanning,” Opt. Lett. 31, 3031-3033 (2006).
[CrossRef]

V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005).
[CrossRef]

Hutchins, H. S.

T. S. Lewis and H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781-1782 (1970).
[CrossRef]

Jacquin, O.

Klossler, A.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Kozlowski, D. A.

Lacot, E.

A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning,” Appl. Opt. 47, 860-869(2008).
[CrossRef]

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Synthetic aperture laser optical feedback imaging using galvanometric scanning,” Opt. Lett. 31, 3031-3033 (2006).
[CrossRef]

V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
[CrossRef]

Lewis, T. S.

T. S. Lewis and H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781-1782 (1970).
[CrossRef]

Lucke, R. L.

Majwski, R. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Marechal, N. J.

Markus, S.

McDonough, R. N.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, 1991).

Muzet, V.

V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005).
[CrossRef]

Otsuka, K.

Papoulis, A.

A. Papoulis, Signal Analysis (McGraw-Hill, 1977), pp. 262-272.

Park, D.

D. Park and J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” Proc. SPIE 999, 100-116(1989).

Pasmurov, A. Ja.

A. Ja. Pasmurov and J. S. Zimoview, Radar Imaging and Holography (Institution of Electrical Engineers, 2005).

Paun, I. A.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Peterson, L. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Reintjes, J.

Ricard, C.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Rickard, L. J.

Schroeder, K. S.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

Shapiro, J. H.

D. Park and J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” Proc. SPIE 999, 100-116(1989).

Stoeckel, F.

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999).
[CrossRef]

Tai, A. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

van der Sanden, B.

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Witomski, A.

Wright, T. J.

Zimoview, J. S.

A. Ja. Pasmurov and J. S. Zimoview, Radar Imaging and Holography (Institution of Electrical Engineers, 2005).

Appl. Opt. (4)

Opt. Lett. (3)

Phys. Rev. A (1)

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001).
[CrossRef]

Proc. IEEE (1)

T. S. Lewis and H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781-1782 (1970).
[CrossRef]

Proc. SPIE (3)

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).

D. Park and J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” Proc. SPIE 999, 100-116(1989).

V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005).
[CrossRef]

Ultramicroscopy (1)

O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523-528(2008).
[CrossRef]

Other (4)

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, 1991).

R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, 1970).

A. Ja. Pasmurov and J. S. Zimoview, Radar Imaging and Holography (Institution of Electrical Engineers, 2005).

A. Papoulis, Signal Analysis (McGraw-Hill, 1977), pp. 262-272.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the LOFI experimental setup. L1 , L2 , and L3 , lenses; f 2 and f 3 , focal lengths; r 0 and r 0 , focal spot radii; F is the total optical frequency shift. (a) High resolution LOFI experiments ( f 2 = 3 cm , r 0 = 30 μm ). (b) Synthetic aperture LOFI experiment. d S is the focal spot–scanner distance; d T is the scanner–target plane distance. (c) Low resolution LOFI experiments ( f 3 = 150 cm , r 0 = 150 μm ).

Fig. 2
Fig. 2

Effect of the length ratio d T / d S on the optical resolution of a SAL experiment using a galvanometric scanner. d S is the distance between the laser focal spot (called laser in the figure) and the scanner mirror and d T is the distance between the scanner mirror and the punctual target. θ is the diffraction angle of the laser beam. (a) Punctual target seen by the diffracted laser beam reflected by the galvanometric mirror. (b) When the galvanometric mirror is rotated for scanning, the virtual laser image (the laser image through the mirror) travels on a circle with a radius d S . NA is the synthetic numerical aperture defined by the two extreme laser beam orientations allowing us to see the punctual target, NA = sin ( θ / 2 ) . (c) By decreasing d T ( d T < d T ), the synthetic numerical aperture NA increases ( θ > θ ). (d) By increasing d S ( d S > d S ), the synthetic numerical aperture NA increases θ > θ .

Fig. 3
Fig. 3

Target under investigation is composed of (a) a retroreflective tape composed of silica balls and (b) pasted on the back side of a printed slide.

Fig. 4
Fig. 4

Images of the same target obtained with the different experimental setups shown in Fig. 1. (a) Classical LOFI image | s ( α x , α y ) | 2 obtained by using the experimental setup of Fig. 1a. (b) LOFI images obtained by using the experimental setup of Fig 1b with d S = d T = 6 cm . Before the synthetic aperture processing | s ( α x , α y ) | 2 (Image b1) and after the synthetic aperture processing | S ( α x , α y ) | 2 (Image b2). (c) Classical LOFI image | s ( α x , α y ) | 2 obtained by using the experimental setup of Fig. 1c.

Fig. 5
Fig. 5

Comparison of the unprocessed LOFI images (right column) and of the SA LOFI images (left column) for different working distances. (a)  d S = 24 cm , d T / d S = 0.25 ; (b)  d S = 13 cm , d T / d S = 0.46 ; (c) d S = 6 cm d T / d S = 1 ; (d)  d S = 3 cm , d T / d S = 2 . Experimental conditions: f 2 = 3 cm , r 0 30 μm , and d T = 6 cm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( α x , α y ) = [ s ( α x , α y ) h x * ( α x , 0 ) ] h y * ( 0 , α y ) ,
δ x δ y r 0 d T d S ,
δ x δ y r 0 d T d s < r 0 .

Metrics