Abstract

The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and 1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45%×2)=90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, J. R. Birge, V. Sharma, J. G. Fujimoto, F. X. Kärtner, V. Scheuer, and G. Angelow, “Ultrabroadband beam splitter with matched group-delay dispersion,” Opt. Lett. 30, 1569-1571(2005).
    [CrossRef] [PubMed]
  2. R. Schnabel, A. Bunkowski, O. Burmeister, and K. Danzmann, “Three-port beam splitters-combiners for interferometer applications,” Opt. Lett. 31, 658-660 (2006).
    [CrossRef] [PubMed]
  3. S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092-6095 (2007).
    [CrossRef] [PubMed]
  4. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22, 142-144 (1997).
    [CrossRef] [PubMed]
  5. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934-6938(2003).
    [CrossRef] [PubMed]
  6. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143-3152 (2005).
    [CrossRef] [PubMed]
  7. Y. Zhang and C. Zhou, “High-efficiency reflective diffraction gratings in fused silica as (de)multiplexers at 1.55 ?m for dense wavelength division multiplexing application,” J. Opt. Soc. Am. A 22, 331-334 (2005).
    [CrossRef]
  8. S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567-2571 (2006).
    [CrossRef] [PubMed]
  9. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007).
    [CrossRef] [PubMed]
  10. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled- wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  11. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434(2005).
    [CrossRef] [PubMed]
  12. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
    [CrossRef]
  13. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819-826 (2007).
    [CrossRef] [PubMed]

2007

2006

2005

2003

1997

1995

1981

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Adams, J. L.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Andrewartha, J. R.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Angelow, G.

Birge, J. R.

Botten, I. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Bouchut, P.

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Bunkowski, A.

Burmeister, O.

Clausnitzer, T.

Craig, M. S.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Danzmann, K.

Fahr, S.

Feng, J.

Fuchs, H.-J.

Fujimoto, J. G.

Gaborit, G.

Gaylord, T. K.

Grann, E. B.

Journot, E.

Jupé, M.

Kämpfe, T.

Kärtner, F. X.

Kim, J.

Kley, E.-B.

Limpert, J.

McPhedran, R. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Moharam, M. G.

Néauport, J.

Nguyen, H. T.

Parriaux, O.

Perry, M. D.

Pommet, D. A.

Ristau, D.

Ru, H.

Scheuer, V.

Schnabel, R.

Sharma, V.

Shore, B. W.

Tishchenko, A. V.

Tünnermann, A.

Wang, B.

Wang, S.

Zellmer, H.

Zhang, Y.

Zhou, C.

Zöllner, K.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Acta

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the fused-silica transmission two-port beam splitter grating: n 1 and n 2 , refractive indices of air and fused silica, respectively; d, period; b and g, ridge and groove widths, respectively; h, depth; θ i , incident angle; θ 0 and θ 1 , diffraction angles of the 0th and 1 st orders in air, respectively.

Fig. 2
Fig. 2

Diffraction efficiency as a function of the grating groove depth for the wavelength of 1550 nm : (a) TE or (b) TM polarization with f = 0.500 and d = 1550 nm , (c) TE and TM polarization with f = 0.643 and d = 1527 nm .

Fig. 3
Fig. 3

Scanning electron micrograph of a fabricated two-port beam splitter grating etched in fused silica with period 1.55 μm , depth 1.38 μm , and duty cycle 0.5.

Fig. 4
Fig. 4

Theoretical and experimental efficiencies of the fabricated two-port beam splitter grating versus incident wavelengths in the C + L band under Littrow mounting for TE polarization.

Fig. 5
Fig. 5

Phase differences of the first two modes versus incident wavelengths in the C + L band with the optimized grating parameters for TE polarization.

Tables (1)

Tables Icon

Table 1 Optimized Numerical Results of Fused-Silica Beam Splitter Gratings Using the RCWA and Their Physical Explanation by Phase Differences Between Two Modes Based on the Modal Method

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

cos β b · cos γ g β 2 + γ 2 2 β γ sin β b · sin γ g = cos α d ,
cos β b · cos γ g n 1 4 β 2 + n 2 4 γ 2 2 n 1 2 n 2 2 β γ sin β b · sin γ g = cos α d ,
α = k 0 sin θ i , β = k 0 n 2 2 n eff 2 , γ = k 0 n 1 2 n eff 2 , k 0 = 2 π / λ .
Δ φ = 2 π λ | n eff 0 n eff 1 | h .

Metrics