Abstract

The performance of a 10mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20μm wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50μm thick LiTaO3 crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >109A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Blevin and J. Geist, “Influence of black coatings on pyroelectric detectors,” Appl. Opt. 13, 1171-1178 (1974).
    [CrossRef] [PubMed]
  2. D. J. Advena, V. T. Bly, and J. T. Cox, “Deposition and characterisation of far-infrared absorbing gold black films,” Appl. Opt. 32, 1136-1144 (1993).
    [CrossRef] [PubMed]
  3. J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916-922 (2003).
    [CrossRef]
  4. N. Nelms and J. Dowson, “Goldblack coating for thermal infrared detectors,” Sens. Actuators A 120, 403-407(2005).
    [CrossRef]
  5. J. H. Lehman, C. Engtrakul, T. Gennet, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483-488 (2005).
    [CrossRef] [PubMed]
  6. J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246-250 (2006).
    [CrossRef]
  7. E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “The evaluation of a pyroelectric detector with a carbon multi-walled nanotube black coating in the infrared,” Appl. Opt. 45, 1093-1097 (2006).
    [CrossRef] [PubMed]
  8. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
    [CrossRef]
  9. A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
    [CrossRef]
  10. E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterisation of infrared detectors and materials,” Proc. SPIE 5209, 228-239(2003).
    [CrossRef]
  11. E. Theocharous, J. Ishii, and N. P. Fox, “A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications,” Infrared Phys. Technol. 46, 309-322 (2005).
    [CrossRef]
  12. E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared,” Appl. Opt. 43, 4182-4188 (2004).
    [CrossRef] [PubMed]
  13. L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
    [CrossRef]
  14. E. Theocharous, T. R. Prior, P. R. Haycocks, and N. P. Fox, “High-accuracy, infrared, spectral responsivity scale,” Metrologia 35, 543-548 (1998).
    [CrossRef]
  15. E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115-S119 (2006).
    [CrossRef]
  16. E. Theocharous, “Absolute linearity measurements on LiTaO3 pyroelectric detectors,” Appl. Opt. 47, 3397-3405 (2008).
    [CrossRef] [PubMed]
  17. W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241-255 (1996).
    [CrossRef]
  18. B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
    [CrossRef]
  19. T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
    [CrossRef]

2008

2007

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

2006

E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115-S119 (2006).
[CrossRef]

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246-250 (2006).
[CrossRef]

E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “The evaluation of a pyroelectric detector with a carbon multi-walled nanotube black coating in the infrared,” Appl. Opt. 45, 1093-1097 (2006).
[CrossRef] [PubMed]

2005

B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
[CrossRef]

J. H. Lehman, C. Engtrakul, T. Gennet, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483-488 (2005).
[CrossRef] [PubMed]

N. Nelms and J. Dowson, “Goldblack coating for thermal infrared detectors,” Sens. Actuators A 120, 403-407(2005).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, “A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications,” Infrared Phys. Technol. 46, 309-322 (2005).
[CrossRef]

2004

2003

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterisation of infrared detectors and materials,” Proc. SPIE 5209, 228-239(2003).
[CrossRef]

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

1999

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

1998

E. Theocharous, T. R. Prior, P. R. Haycocks, and N. P. Fox, “High-accuracy, infrared, spectral responsivity scale,” Metrologia 35, 543-548 (1998).
[CrossRef]

1996

W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241-255 (1996).
[CrossRef]

1995

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
[CrossRef]

1993

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
[CrossRef]

D. J. Advena, V. T. Bly, and J. T. Cox, “Deposition and characterisation of far-infrared absorbing gold black films,” Appl. Opt. 32, 1136-1144 (1993).
[CrossRef] [PubMed]

1974

Advena, D. J.

Alleman, J. L.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

Barnes, T. M.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Becker, W.

W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241-255 (1996).
[CrossRef]

Blevin, W. R.

Bly, V. T.

Boivin, L. P.

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
[CrossRef]

Britz, D. A.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Clarke, F. J. J.

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterisation of infrared detectors and materials,” Proc. SPIE 5209, 228-239(2003).
[CrossRef]

Colbert, D. T.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
[CrossRef]

Coutts, T. J.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Cox, J. T.

Cress, C. D.

B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
[CrossRef]

Deshpande, R.

E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “The evaluation of a pyroelectric detector with a carbon multi-walled nanotube black coating in the infrared,” Appl. Opt. 45, 1093-1097 (2006).
[CrossRef] [PubMed]

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246-250 (2006).
[CrossRef]

Dillon, A. C.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246-250 (2006).
[CrossRef]

E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “The evaluation of a pyroelectric detector with a carbon multi-walled nanotube black coating in the infrared,” Appl. Opt. 45, 1093-1097 (2006).
[CrossRef] [PubMed]

J. H. Lehman, C. Engtrakul, T. Gennet, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483-488 (2005).
[CrossRef] [PubMed]

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

Dowson, J.

N. Nelms and J. Dowson, “Goldblack coating for thermal infrared detectors,” Sens. Actuators A 120, 403-407(2005).
[CrossRef]

Engtrakul, C.

Eppeldauer, G.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Evans, C. M.

B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
[CrossRef]

Fettig, R.

W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241-255 (1996).
[CrossRef]

Fox, N. P.

E. Theocharous, J. Ishii, and N. P. Fox, “A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications,” Infrared Phys. Technol. 46, 309-322 (2005).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared,” Appl. Opt. 43, 4182-4188 (2004).
[CrossRef] [PubMed]

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterisation of infrared detectors and materials,” Proc. SPIE 5209, 228-239(2003).
[CrossRef]

E. Theocharous, T. R. Prior, P. R. Haycocks, and N. P. Fox, “High-accuracy, infrared, spectral responsivity scale,” Metrologia 35, 543-548 (1998).
[CrossRef]

Gaymann, A.

W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241-255 (1996).
[CrossRef]

Geist, J.

Gennet, T.

Gennett, T.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

Glatkowski, P.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Guo, T.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
[CrossRef]

Haycocks, P. R.

E. Theocharous, T. R. Prior, P. R. Haycocks, and N. P. Fox, “High-accuracy, infrared, spectral responsivity scale,” Metrologia 35, 543-548 (1998).
[CrossRef]

Heben, M. J.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

Ishii, J.

E. Theocharous, J. Ishii, and N. P. Fox, “A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications,” Infrared Phys. Technol. 46, 309-322 (2005).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared,” Appl. Opt. 43, 4182-4188 (2004).
[CrossRef] [PubMed]

Jones, K. M.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

Landi, B. J.

B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
[CrossRef]

Lehman, J.

E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “The evaluation of a pyroelectric detector with a carbon multi-walled nanotube black coating in the infrared,” Appl. Opt. 45, 1093-1097 (2006).
[CrossRef] [PubMed]

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Lehman, J. H.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246-250 (2006).
[CrossRef]

J. H. Lehman, C. Engtrakul, T. Gennet, and A. C. Dillon, “Single-wall carbon nanotube coating on a pyroelectric detector,” Appl. Opt. 44, 483-488 (2005).
[CrossRef] [PubMed]

Levi, D.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Levitsky, I.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Nelms, N.

N. Nelms and J. Dowson, “Goldblack coating for thermal infrared detectors,” Sens. Actuators A 120, 403-407(2005).
[CrossRef]

Nikolaev, P.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
[CrossRef]

Pannel, C.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Parilla, P. A.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

Peltola, J.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Prior, T. R.

E. Theocharous, T. R. Prior, P. R. Haycocks, and N. P. Fox, “High-accuracy, infrared, spectral responsivity scale,” Metrologia 35, 543-548 (1998).
[CrossRef]

Raffaelle, R. P.

B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
[CrossRef]

Rice, P.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246-250 (2006).
[CrossRef]

Rodgers, L. J.

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterisation of infrared detectors and materials,” Proc. SPIE 5209, 228-239(2003).
[CrossRef]

Ruf, H. J.

B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
[CrossRef]

Rumbles, G.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Ruppel, W.

W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241-255 (1996).
[CrossRef]

Smalley, R. E.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
[CrossRef]

Theocharous, E.

E. Theocharous, “Absolute linearity measurements on LiTaO3 pyroelectric detectors,” Appl. Opt. 47, 3397-3405 (2008).
[CrossRef] [PubMed]

E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115-S119 (2006).
[CrossRef]

E. Theocharous, R. Deshpande, A. C. Dillon, and J. Lehman, “The evaluation of a pyroelectric detector with a carbon multi-walled nanotube black coating in the infrared,” Appl. Opt. 45, 1093-1097 (2006).
[CrossRef] [PubMed]

E. Theocharous, J. Ishii, and N. P. Fox, “A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications,” Infrared Phys. Technol. 46, 309-322 (2005).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, “Absolute linearity measurements on HgCdTe detectors in the infrared,” Appl. Opt. 43, 4182-4188 (2004).
[CrossRef] [PubMed]

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterisation of infrared detectors and materials,” Proc. SPIE 5209, 228-239(2003).
[CrossRef]

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

E. Theocharous, T. R. Prior, P. R. Haycocks, and N. P. Fox, “High-accuracy, infrared, spectral responsivity scale,” Metrologia 35, 543-548 (1998).
[CrossRef]

Thess, A.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
[CrossRef]

van de Lagemaat, J.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Weeks, C. L.

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Adv. Mater.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354-1358 (1999).
[CrossRef]

Appl. Opt.

Chem. Phys. Lett.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49-54 (1995).
[CrossRef]

Infrared Phys. Technol.

J. H. Lehman, R. Deshpande, P. Rice, and A. C. Dillon, “Carbon multi-walled nanotubes grown by HWCVD on a pyroelectric detector,” Infrared Phys. Technol. 47, 246-250 (2006).
[CrossRef]

E. Theocharous, J. Ishii, and N. P. Fox, “A comparison of the performance of a photovoltaic HgCdTe detector with that of a large area single pixel QWIP for infrared radiometric applications,” Infrared Phys. Technol. 46, 309-322 (2005).
[CrossRef]

J. Phys. Chem. B

B. J. Landi, H. J. Ruf, C. M. Evans, C. D. Cress, and R. P. Raffaelle, “Purity assessment of single-wall carbon nanotubes using optical absorption spectroscopy,” J. Phys. Chem. B 109, 9952-9965 (2005).
[CrossRef]

Meas. Sci. Technol.

J. Lehman, E. Theocharous, G. Eppeldauer, and C. Pannel, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916-922 (2003).
[CrossRef]

Metrologia

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia 30, 355-360 (1993).
[CrossRef]

E. Theocharous, T. R. Prior, P. R. Haycocks, and N. P. Fox, “High-accuracy, infrared, spectral responsivity scale,” Metrologia 35, 543-548 (1998).
[CrossRef]

E. Theocharous, “The establishment of the NPL infrared relative spectral response scale using cavity pyroelectric detectors,” Metrologia 43, S115-S119 (2006).
[CrossRef]

Phys. Rev. B

T. M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T. J. Coutts, C. L. Weeks, D. A. Britz, I. Levitsky, J. Peltola, and P. Glatkowski, “Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes,” Phys. Rev. B 75, 235410 (2007).
[CrossRef]

Phys. Status Solidi B

W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241-255 (1996).
[CrossRef]

Proc. SPIE

E. Theocharous, F. J. J. Clarke, L. J. Rodgers, and N. P. Fox, “Latest techniques at NPL for the characterisation of infrared detectors and materials,” Proc. SPIE 5209, 228-239(2003).
[CrossRef]

Sens. Actuators A

N. Nelms and J. Dowson, “Goldblack coating for thermal infrared detectors,” Sens. Actuators A 120, 403-407(2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Relative spectral responsivity of the SWCNT-coated pyroelectric detector in the 0.8 to 5 μm wavelength range normalized at 0.8 μm . The error bars represent the 1 σ uncertainty of the measurements.

Fig. 2
Fig. 2

Relative spectral responsivity of the SWCNT-coated pyroelectric detector in the 0.8 to 20 μm wavelength range normalized at 0.8 μm .

Fig. 3
Fig. 3

Spatial uniformity of response plot of the SWCNT-coated pyroelectric detector acquired with a source wavelength of 1.25 μm and a 0.6 mm diameter probe spot.

Fig. 4
Fig. 4

Linearity characteristics of the SWCNT-coated pyroelectric detector. The error bars represent the standard deviation of eight measurements of the linearity factor at each DC equivalent photocurrent value.

Fig. 5
Fig. 5

Normalized response at different temperatures and best straight line fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L ( V A + B ) = V A + B ( V A + V B ) ,

Metrics