Abstract

A new method for the fabrication of polymer waveguides between two optical fibers using a spatially controlled photopolymerization is reported. By taking advantage of the self-guiding effect of light through a photopolymerizable medium, polymer waveguides perfectly aligned with the fiber cores and strongly anchored to their surfaces are fabricated. The process is characterized by following in situ the coupling efficiency of a nonactinic laser source. Examples of waveguides exhibiting good coupling efficiency and high flexibility are given. By selecting the suitable monomers and adjusting the photonic parameters, the optical and mechanical waveguide properties (diameter, length, refractive index, rigidity, and flexibility) can be controlled in view of optical sensor applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).
  2. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860-5871 (2001).
    [CrossRef]
  3. S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” submitted to Journal of Optical Materials.
  4. O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. A Polym. Chem. 46, 3783-3794 (2008).
    [CrossRef]
  5. R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer, “Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization,” Opt. Lett. 29, 1971-1973 (2004).
    [CrossRef] [PubMed]
  6. J. S. Bouillard, “Microscopie en champ proche optique à base de micropointes optiques en polymère : développement et applications,” Ph.D. dissertation (Université de Technologie de Troyes, 2007).
  7. K. D. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carré, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784(2002).
    [CrossRef]
  8. M. Hocine, N. Fressengeas, G. Kugel, C. Carré, D. J. Lougnot, R. Bachelot, and P. Royer, “Modeling the growth of a polymer microtip on an optical fiber end,” J. Opt. Soc. Am. B 23, 611-620 (2006).
    [CrossRef]
  9. M. Kagami, T. Yamashita, H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
    [CrossRef]
  10. O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
    [CrossRef]
  11. O. Mikami, “A new architecture for board-level optical wirings applying optical pin and self-written waveguide,” Proc. SPIE 6014, 60140L.1-60140L.13 (2005).
  12. S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
    [CrossRef]
  13. S. Jradi, O. Soppera, and D. J. Lougnot, “Analysis of photopolymerized acrylic films by AFM in pulsed force mode,” J. Microscopy 229, 151-161 (2008).
    [CrossRef]
  14. H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
    [CrossRef] [PubMed]

2008

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. A Polym. Chem. 46, 3783-3794 (2008).
[CrossRef]

S. Jradi, O. Soppera, and D. J. Lougnot, “Analysis of photopolymerized acrylic films by AFM in pulsed force mode,” J. Microscopy 229, 151-161 (2008).
[CrossRef]

2007

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

J. S. Bouillard, “Microscopie en champ proche optique à base de micropointes optiques en polymère : développement et applications,” Ph.D. dissertation (Université de Technologie de Troyes, 2007).

2006

2005

O. Mikami, “A new architecture for board-level optical wirings applying optical pin and self-written waveguide,” Proc. SPIE 6014, 60140L.1-60140L.13 (2005).

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

2004

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer, “Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization,” Opt. Lett. 29, 1971-1973 (2004).
[CrossRef] [PubMed]

2002

2001

M. Kagami, T. Yamashita, H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860-5871 (2001).
[CrossRef]

Andraud, C.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

Bachelot, R.

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

M. Hocine, N. Fressengeas, G. Kugel, C. Carré, D. J. Lougnot, R. Bachelot, and P. Royer, “Modeling the growth of a polymer microtip on an optical fiber end,” J. Opt. Soc. Am. B 23, 611-620 (2006).
[CrossRef]

R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer, “Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization,” Opt. Lett. 29, 1971-1973 (2004).
[CrossRef] [PubMed]

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860-5871 (2001).
[CrossRef]

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” submitted to Journal of Optical Materials.

Barchiesi, D.

Barsella, A.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

Bouillard, J. S.

J. S. Bouillard, “Microscopie en champ proche optique à base de micropointes optiques en polymère : développement et applications,” Ph.D. dissertation (Université de Technologie de Troyes, 2007).

Bulou, H.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

Carré, C.

Cregut, O.

Deloeil, D.

Dorkenoo, K. D.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

K. D. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carré, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784(2002).
[CrossRef]

Ecoffet, C.

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860-5871 (2001).
[CrossRef]

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

El Ahrach, H. Ibn

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

Endo, H.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

Espanet, A.

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

Fares, A.

Fikri, R.

Fort, A.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

K. D. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carré, and A. Fort, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782-1784(2002).
[CrossRef]

Fressengeas, N.

Gillot, F.

Grimault, A.-S

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

Hocine, M.

Ito, H.

M. Kagami, T. Yamashita, H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Jradi, S.

S. Jradi, O. Soppera, and D. J. Lougnot, “Analysis of photopolymerized acrylic films by AFM in pulsed force mode,” J. Microscopy 229, 151-161 (2008).
[CrossRef]

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. A Polym. Chem. 46, 3783-3794 (2008).
[CrossRef]

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” submitted to Journal of Optical Materials.

Kagami, M.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

M. Kagami, T. Yamashita, H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Kaino, T.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

Klein, S.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

Kugel, G.

Leblond, H.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

Lemercier, G.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

Lerondel, G.

Lérondel, G.

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

Lougnot, D. J.

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. A Polym. Chem. 46, 3783-3794 (2008).
[CrossRef]

S. Jradi, O. Soppera, and D. J. Lougnot, “Analysis of photopolymerized acrylic films by AFM in pulsed force mode,” J. Microscopy 229, 151-161 (2008).
[CrossRef]

M. Hocine, N. Fressengeas, G. Kugel, C. Carré, D. J. Lougnot, R. Bachelot, and P. Royer, “Modeling the growth of a polymer microtip on an optical fiber end,” J. Opt. Soc. Am. B 23, 611-620 (2006).
[CrossRef]

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860-5871 (2001).
[CrossRef]

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” submitted to Journal of Optical Materials.

Mager, L.

Mikami, O.

O. Mikami, “A new architecture for board-level optical wirings applying optical pin and self-written waveguide,” Proc. SPIE 6014, 60140L.1-60140L.13 (2005).

Mulatier, J. C.

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

Okamoto, N.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

Plain, J.

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

Royer, P.

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

M. Hocine, N. Fressengeas, G. Kugel, C. Carré, D. J. Lougnot, R. Bachelot, and P. Royer, “Modeling the growth of a polymer microtip on an optical fiber end,” J. Opt. Soc. Am. B 23, 611-620 (2006).
[CrossRef]

R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer, “Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photopolymerization,” Opt. Lett. 29, 1971-1973 (2004).
[CrossRef] [PubMed]

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40, 5860-5871 (2001).
[CrossRef]

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” submitted to Journal of Optical Materials.

Soppera, O.

S. Jradi, O. Soppera, and D. J. Lougnot, “Analysis of photopolymerized acrylic films by AFM in pulsed force mode,” J. Microscopy 229, 151-161 (2008).
[CrossRef]

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. A Polym. Chem. 46, 3783-3794 (2008).
[CrossRef]

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” submitted to Journal of Optical Materials.

Sugihara, O.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

Tsuchie, H.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

Vial, A.

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

Wurtz, G.

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

Yamashita, T.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

M. Kagami, T. Yamashita, H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Kagami, T. Yamashita, H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079-1081 (2001).
[CrossRef]

S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. D. Dorkenoo, “One-step waveguide and optical circuit writing in photopolymerizable materials processed by two-photon absorption,” Appl. Phys. Lett. 86, 211118 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technol. Lett. 16, 804-806 (2004).
[CrossRef]

J. Microscopy

S. Jradi, O. Soppera, and D. J. Lougnot, “Analysis of photopolymerized acrylic films by AFM in pulsed force mode,” J. Microscopy 229, 151-161 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Polym. Sci. A Polym. Chem.

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. A Polym. Chem. 46, 3783-3794 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S Grimault, G. Lérondel, J. Plain, P. Royer, and O. Soppera, “Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization,” Phys. Rev. Lett. 98, 107402 (2007).
[CrossRef] [PubMed]

Proc. SPIE

O. Mikami, “A new architecture for board-level optical wirings applying optical pin and self-written waveguide,” Proc. SPIE 6014, 60140L.1-60140L.13 (2005).

Other

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, “Monomodal or weakly multimodal optical fibers, with large numerical aperture at ends, having tip(s) of transparent plastics for forming specific connections e.g. to other optical fibers or lasers,” French patent FR27980740(2001).

S. Jradi, O. Soppera, D. J. Lougnot, R. Bachelot, and P. Royer, “Tailoring the geometry of polymer tips on the end of optical fibers via control of physico-chemical parameters,” submitted to Journal of Optical Materials.

J. S. Bouillard, “Microscopie en champ proche optique à base de micropointes optiques en polymère : développement et applications,” Ph.D. dissertation (Université de Technologie de Troyes, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photopolymerization at the end of optical fibers. (a) Polymer tips fabricated with different dye concentrations and surrounding atmosphere. (b)  1.26 mm polymer waveguide obtained with an optical fiber whose end is dipped into a container of photopolymerizable formulation.

Fig. 2
Fig. 2

Schema illustrating the optical setup for the fabrication of polymer waveguides.

Fig. 3
Fig. 3

Transmission spectra of the formulation used, before and after photopolymerization ( 30 μm thickness and 0.5 wt . % dye sensitizer).

Fig. 4
Fig. 4

Evolution of the fluorescence of the sensitizer dye observed during irradiation of a photopolymerizable drop deposited between two optical fibers. Dashed lines were added on the pictures to symbolize the fiber edges.

Fig. 5
Fig. 5

Evolution of the coupling efficiency during the fabrication of the polymer junction.

Fig. 6
Fig. 6

90 μm long waveguide between two optical fibers ( light power = 5 μW , coupling ratio at 633 nm = 63 % ).

Fig. 7
Fig. 7

Various geometries of waveguides exemplifying the high versatility of the process: in the first row, the green light intensity and distance between fibers were modified to obtain various waveguides. In the second row, the junction section was irradiated with an external white source before the development step, giving rise to waveguides with different geometry.

Fig. 8
Fig. 8

Images illustrating the mechanical properties of the polymer waveguide.

Metrics