Abstract

Seawater has been irradiated using a train of 70ns flashes from a 440nm laser source. This wavelength is on resonance with the blue absorption peak of Chlorophyll pigment associated with the photosystem of in vitro phytoplankton. The resulting fluorescence at 685nm is instantaneously recorded during each laser pulse using a streak camera. Delayed fluorescence is observed, yielding clues about initiation of the photosynthetic process on a nanosecond time scale. Further data processing allows for determination of the functional absorption cross section, found to be 0.0095Å2, which is the first reporting of this number for in vitro phytoplankton. Unlike other flash-pump studies of Chlorophyll, using a LED or flashlamp-based sources, the short laser pulse used here does not reveal any pulse-to-pulse hysteresis (i.e., variable fluorescence), indicating that the laser pulses used here are not able to drive the photosynthetic process to completion. This is attributed to competition from a back reaction between the photoexcited photosystem II and the intermediate electron acceptor. The significance of this work as a new type of deployable ocean fluorimeter is discussed, and it is believed the apparatus will have applications in thin-layer phytoplankton research.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Kolber, O. Prasil, and P. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta 1367, 888-106 (1988).
  2. P. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol. 22, 341-355 (1995).
  3. G. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: a Signature of Photosynthesis (Springer, 2004).
  4. G. Portrer, J. A. Synowiec, and C. J. Tredwell, “Intensity effects on the fluorescence of in vivo chlorophyll,” Biochim. Biophys. Acta 11, 329-3361 (1977).
  5. J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).
  6. A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).
  7. M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).
  8. P. Booth and J. Paulsen, “Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements,” Biochemistry 25, 5103-5108 (1996).
  9. V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).
  10. P. Falkowski and D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plank. Res. 7, 715-731 (1985).
  11. Z. Kolber and P. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646-1665 (1993).
  12. P. Falkowski and J. Raven, Aquatic Photosynthesis, (Blackwell Science, 1997).
  13. V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).
  14. T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”
  15. Crystalaser, 4750 Longley Ln., Suite 205, Reno, Nevada 89502, www.crystalaser.com. Laser model #QB440.
  16. Photek Inc., 26 Castleham Road St, Leonards on Sea, East Sussex, TN38 9NS, United Kingdom, www.photek.com.
  17. Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, California 94089, www.thinksrs.com, Model #DG535.
  18. See “ImageJ” software at http://rsb.info.nih.gov/ij/.
  19. A readily available 685 nm continuous-wave diode laser was used for this calibration step. Power was controlled via neutral density filters.
  20. D. R. James, A. Siemiarczuk, and W. R. Ware, “Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes,” Rev. Sci. Instrum. 63, 1710-1716 (1992).
    [CrossRef]
  21. Govindjee, J. Amesz, and D. C. Fork, Light Emission by Plants and Bacteria (Academic, 1986).
  22. N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749-758(2001).
    [CrossRef]
  23. V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).
  24. I. Zaharieva, V. Goltsev, “Advances on photosystem II investigation by measurement of delayed fluorescence by a phosphoroscopic method,” Photochem. Photobiol. 77, 292-298 (2003).
  25. J. Haveman and J. Lavorel, “Identification of the 120 microsecond phase in the decay of delayed fluorescence in spinach chloroplasts and subchloroplast particles as the intrinsic back reaction. The dependence of the level of phase on the thylakoids internal pH,” Biochim. Biophys. Acta, Mol. Basis Dis. 408, 269-2831975).
  26. K. K. Karukstis and K. Sauer, “Fluorescence decay kinetics of chlorophyll in photosynthetic membranes,” J. Cell Biochem. 23, 131-158 (1983).
  27. W. A. Arnold, “Experiments,” Photosynth. Res. 27, 73-82(1991).
  28. Ocean Optics, 830 Douglas Ave., Dunedin, Florida 34698, USA, www.oceanoptics.com, see the USB-4000 spectrometer.
  29. L. Valkunas, N. E. Geacintov, L. France, and J. Breton, “The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses,” Biophys. J. 59, 397-408 (1991).
  30. A. C. Ley and D. Mauzerall, “Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris,” Biochim. Biohys. Acta 680, 95-1061982).
  31. Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta Mol. Basis Dis. 1367, 88-106(1998).
  32. D. Mauzerall, “Light-induced fluorescence changes in chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. USA 69, 1358-1362 (1972).
  33. Hydroid, LLC, 6 Benjamin Nye Circle, Pocasset, Massachusetts 02559-4900, www.hydroid.com.
  34. U. Uehlinger, “An in situ pulse light fluorimeter for chlorophyll determination as a monitor for vertical and horizontal phytoplankton distribution in lakes,” J. Plank. Res. 7, 605-615(1985).
  35. M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

2007 (1)

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

2005 (1)

V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).

2004 (1)

G. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: a Signature of Photosynthesis (Springer, 2004).

2003 (2)

V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).

I. Zaharieva, V. Goltsev, “Advances on photosystem II investigation by measurement of delayed fluorescence by a phosphoroscopic method,” Photochem. Photobiol. 77, 292-298 (2003).

2001 (2)

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749-758(2001).
[CrossRef]

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

1998 (1)

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta Mol. Basis Dis. 1367, 88-106(1998).

1997 (1)

P. Falkowski and J. Raven, Aquatic Photosynthesis, (Blackwell Science, 1997).

1996 (1)

P. Booth and J. Paulsen, “Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements,” Biochemistry 25, 5103-5108 (1996).

1995 (1)

P. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol. 22, 341-355 (1995).

1993 (1)

Z. Kolber and P. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646-1665 (1993).

1992 (1)

D. R. James, A. Siemiarczuk, and W. R. Ware, “Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes,” Rev. Sci. Instrum. 63, 1710-1716 (1992).
[CrossRef]

1991 (2)

W. A. Arnold, “Experiments,” Photosynth. Res. 27, 73-82(1991).

L. Valkunas, N. E. Geacintov, L. France, and J. Breton, “The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses,” Biophys. J. 59, 397-408 (1991).

1988 (1)

Z. Kolber, O. Prasil, and P. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta 1367, 888-106 (1988).

1987 (1)

J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).

1986 (1)

Govindjee, J. Amesz, and D. C. Fork, Light Emission by Plants and Bacteria (Academic, 1986).

1985 (2)

P. Falkowski and D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plank. Res. 7, 715-731 (1985).

U. Uehlinger, “An in situ pulse light fluorimeter for chlorophyll determination as a monitor for vertical and horizontal phytoplankton distribution in lakes,” J. Plank. Res. 7, 605-615(1985).

1983 (1)

K. K. Karukstis and K. Sauer, “Fluorescence decay kinetics of chlorophyll in photosynthetic membranes,” J. Cell Biochem. 23, 131-158 (1983).

1982 (1)

A. C. Ley and D. Mauzerall, “Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris,” Biochim. Biohys. Acta 680, 95-1061982).

1980 (1)

V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).

1977 (1)

G. Portrer, J. A. Synowiec, and C. J. Tredwell, “Intensity effects on the fluorescence of in vivo chlorophyll,” Biochim. Biophys. Acta 11, 329-3361 (1977).

1976 (1)

A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).

1975 (1)

J. Haveman and J. Lavorel, “Identification of the 120 microsecond phase in the decay of delayed fluorescence in spinach chloroplasts and subchloroplast particles as the intrinsic back reaction. The dependence of the level of phase on the thylakoids internal pH,” Biochim. Biophys. Acta, Mol. Basis Dis. 408, 269-2831975).

1972 (1)

D. Mauzerall, “Light-induced fluorescence changes in chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. USA 69, 1358-1362 (1972).

Akimoto, S.

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

Amesz, J.

Govindjee, J. Amesz, and D. C. Fork, Light Emission by Plants and Bacteria (Academic, 1986).

Arnold, W. A.

W. A. Arnold, “Experiments,” Photosynth. Res. 27, 73-82(1991).

Bensky, T. J.

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Booth, P.

P. Booth and J. Paulsen, “Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements,” Biochemistry 25, 5103-5108 (1996).

Breton, J.

L. Valkunas, N. E. Geacintov, L. France, and J. Breton, “The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses,” Biophys. J. 59, 397-408 (1991).

Bukhov, N. G.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749-758(2001).
[CrossRef]

Campillo, A. J.

A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).

Chemo, L.

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Chernev, P.

V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).

Dekshenkis, M. M.

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

Donaghay, P. L.

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

Falkowski, P.

P. Falkowski and J. Raven, Aquatic Photosynthesis, (Blackwell Science, 1997).

P. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol. 22, 341-355 (1995).

Z. Kolber and P. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646-1665 (1993).

Z. Kolber, O. Prasil, and P. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta 1367, 888-106 (1988).

P. Falkowski and D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plank. Res. 7, 715-731 (1985).

Falkowski, P. G.

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta Mol. Basis Dis. 1367, 88-106(1998).

Fork, D. C.

Govindjee, J. Amesz, and D. C. Fork, Light Emission by Plants and Bacteria (Academic, 1986).

France, L.

L. Valkunas, N. E. Geacintov, L. France, and J. Breton, “The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses,” Biophys. J. 59, 397-408 (1991).

Geacintov, N. E.

L. Valkunas, N. E. Geacintov, L. France, and J. Breton, “The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses,” Biophys. J. 59, 397-408 (1991).

Gilbert, C.

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Giorgi, L.

J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).

Goltsev, V.

V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).

V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).

I. Zaharieva, V. Goltsev, “Advances on photosystem II investigation by measurement of delayed fluorescence by a phosphoroscopic method,” Photochem. Photobiol. 77, 292-298 (2003).

V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).

Govindjee,

G. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: a Signature of Photosynthesis (Springer, 2004).

Govindjee, J. Amesz, and D. C. Fork, Light Emission by Plants and Bacteria (Academic, 1986).

Haveman, J.

J. Haveman and J. Lavorel, “Identification of the 120 microsecond phase in the decay of delayed fluorescence in spinach chloroplasts and subchloroplast particles as the intrinsic back reaction. The dependence of the level of phase on the thylakoids internal pH,” Biochim. Biophys. Acta, Mol. Basis Dis. 408, 269-2831975).

Heber, U.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749-758(2001).
[CrossRef]

Hyer, R. C.

A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).

Ide, J.

J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).

James, D. R.

D. R. James, A. Siemiarczuk, and W. R. Ware, “Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes,” Rev. Sci. Instrum. 63, 1710-1716 (1992).
[CrossRef]

Karukstis, K. K.

K. K. Karukstis and K. Sauer, “Fluorescence decay kinetics of chlorophyll in photosynthetic membranes,” J. Cell Biochem. 23, 131-158 (1983).

Kiefer, D. A.

P. Falkowski and D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plank. Res. 7, 715-731 (1985).

Klug, D.

J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).

Kolber, Z.

P. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol. 22, 341-355 (1995).

Z. Kolber and P. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646-1665 (1993).

Z. Kolber, O. Prasil, and P. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta 1367, 888-106 (1988).

Kolber, Z. S.

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta Mol. Basis Dis. 1367, 88-106(1998).

Kollman, V. H.

A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).

Kuhlbrandt, W.

J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).

Lambrev, P.

V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).

V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).

Lavorel, J.

J. Haveman and J. Lavorel, “Identification of the 120 microsecond phase in the decay of delayed fluorescence in spinach chloroplasts and subchloroplast particles as the intrinsic back reaction. The dependence of the level of phase on the thylakoids internal pH,” Biochim. Biophys. Acta, Mol. Basis Dis. 408, 269-2831975).

Ley, A. C.

A. C. Ley and D. Mauzerall, “Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris,” Biochim. Biohys. Acta 680, 95-1061982).

Matorin, D.

V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).

Mauzerall, D.

A. C. Ley and D. Mauzerall, “Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris,” Biochim. Biohys. Acta 680, 95-1061982).

D. Mauzerall, “Light-induced fluorescence changes in chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. USA 69, 1358-1362 (1972).

Mimuro, M.

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

Miyashita, H.

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

Moline, M. A.

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Neff, B.

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Ortoidze, T.

V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).

Osborn, T. R.

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

Papageorgiou, G.

G. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: a Signature of Photosynthesis (Springer, 2004).

Paulsen, J.

P. Booth and J. Paulsen, “Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements,” Biochemistry 25, 5103-5108 (1996).

Porter, G.

J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).

Portrer, G.

G. Portrer, J. A. Synowiec, and C. J. Tredwell, “Intensity effects on the fluorescence of in vivo chlorophyll,” Biochim. Biophys. Acta 11, 329-3361 (1977).

Prasil, O.

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta Mol. Basis Dis. 1367, 88-106(1998).

Z. Kolber, O. Prasil, and P. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta 1367, 888-106 (1988).

Raven, J.

P. Falkowski and J. Raven, Aquatic Photosynthesis, (Blackwell Science, 1997).

Rines, J. E. B.

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

Robbins, I.

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Rohan, D.

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Sauer, K.

K. K. Karukstis and K. Sauer, “Fluorescence decay kinetics of chlorophyll in photosynthetic membranes,” J. Cell Biochem. 23, 131-158 (1983).

Shapiro, S. L.

A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).

Shuvalov, V. A.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749-758(2001).
[CrossRef]

Siemiarczuk, A.

D. R. James, A. Siemiarczuk, and W. R. Ware, “Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes,” Rev. Sci. Instrum. 63, 1710-1716 (1992).
[CrossRef]

Socolov, Z.

V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).

Strasser, R.

V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).

Strasser, R. J.

V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).

Sullivan, J. M.

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

Synowiec, J. A.

G. Portrer, J. A. Synowiec, and C. J. Tredwell, “Intensity effects on the fluorescence of in vivo chlorophyll,” Biochim. Biophys. Acta 11, 329-3361 (1977).

Tomo, T.

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

Tredwell, C. J.

G. Portrer, J. A. Synowiec, and C. J. Tredwell, “Intensity effects on the fluorescence of in vivo chlorophyll,” Biochim. Biophys. Acta 11, 329-3361 (1977).

Tsuchiya, T.

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

Twardowski, M. S.

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

Uehlinger, U.

U. Uehlinger, “An in situ pulse light fluorimeter for chlorophyll determination as a monitor for vertical and horizontal phytoplankton distribution in lakes,” J. Plank. Res. 7, 605-615(1985).

Valkunas, L.

L. Valkunas, N. E. Geacintov, L. France, and J. Breton, “The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses,” Biophys. J. 59, 397-408 (1991).

Venediktov, P.

V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).

Ware, W. R.

D. R. James, A. Siemiarczuk, and W. R. Ware, “Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes,” Rev. Sci. Instrum. 63, 1710-1716 (1992).
[CrossRef]

Wiese, C.

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749-758(2001).
[CrossRef]

Winn, K. R.

A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).

Yokono, M.

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

Yordanov, I.

V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).

Zaharieva, I.

V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).

I. Zaharieva, V. Goltsev, “Advances on photosystem II investigation by measurement of delayed fluorescence by a phosphoroscopic method,” Photochem. Photobiol. 77, 292-298 (2003).

V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).

Aust. J. Plant Physiol. (1)

P. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol. 22, 341-355 (1995).

Biochemistry (1)

P. Booth and J. Paulsen, “Assembly of light-harvesting chlorophyll a/b complex in vitro. Time-resolved fluorescence measurements,” Biochemistry 25, 5103-5108 (1996).

Biochim. Biohys. Acta (1)

A. C. Ley and D. Mauzerall, “Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris,” Biochim. Biohys. Acta 680, 95-1061982).

Biochim. Biophys. Acta (3)

Z. Kolber, O. Prasil, and P. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta 1367, 888-106 (1988).

G. Portrer, J. A. Synowiec, and C. J. Tredwell, “Intensity effects on the fluorescence of in vivo chlorophyll,” Biochim. Biophys. Acta 11, 329-3361 (1977).

J. Ide, D. Klug, W. Kuhlbrandt, L. Giorgi, and G. Porter, “The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by ps time-resolved fluorescence and circular dichroism,” Biochim. Biophys. Acta 893, 349-364 (1987).

Biochim. Biophys. Acta Mol. Basis Dis. (2)

M. Mimuro, S. Akimoto, T. Tomo, M. Yokono, H. Miyashita, and T. Tsuchiya, “Delayed fluorescence observed in the ns time region at 77 K orginated directly from the photosystem II reaction center,” Biochim. Biophys. Acta Mol. Basis Dis. 1767, 327-334 (2007).

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta Mol. Basis Dis. 1367, 88-106(1998).

Biochim. Biophys. Acta, Mol. Basis Dis. (1)

J. Haveman and J. Lavorel, “Identification of the 120 microsecond phase in the decay of delayed fluorescence in spinach chloroplasts and subchloroplast particles as the intrinsic back reaction. The dependence of the level of phase on the thylakoids internal pH,” Biochim. Biophys. Acta, Mol. Basis Dis. 408, 269-2831975).

Biophys. J. (2)

L. Valkunas, N. E. Geacintov, L. France, and J. Breton, “The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses,” Biophys. J. 59, 397-408 (1991).

A. J. Campillo, S. L. Shapiro, V. H. Kollman, K. R. Winn, and R. C. Hyer, “Picosecond exciton annihilation in photosynthetic systems,” Biophys. J. 16, 93-97 (1976).

J. Cell Biochem. (1)

K. K. Karukstis and K. Sauer, “Fluorescence decay kinetics of chlorophyll in photosynthetic membranes,” J. Cell Biochem. 23, 131-158 (1983).

J. Plank. Res. (2)

U. Uehlinger, “An in situ pulse light fluorimeter for chlorophyll determination as a monitor for vertical and horizontal phytoplankton distribution in lakes,” J. Plank. Res. 7, 605-615(1985).

P. Falkowski and D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plank. Res. 7, 715-731 (1985).

J. Theor. Biol. (1)

V. Goltsev, I. Zaharieva, P. Lambrev, I. Yordanov, and R. Strasser, “Simultaneous analysis of prompt and delayed chlorophyll a fluorescence in leaves during the induction period of dark to light adaptation,” J. Theor. Biol. 225, 171-183 (2003).

Limnol. Oceanogr. (1)

Z. Kolber and P. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646-1665 (1993).

Mar. Ecol. Prog. Ser. (1)

M. M. Dekshenkis, P. L. Donaghay, J. M. Sullivan, J. E. B. Rines, T. R. Osborn, and M. S. Twardowski, “Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes,” Mar. Ecol. Prog. Ser. 223, 61-71 (2001).

Photochem. Photobiol. (1)

I. Zaharieva, V. Goltsev, “Advances on photosystem II investigation by measurement of delayed fluorescence by a phosphoroscopic method,” Photochem. Photobiol. 77, 292-298 (2003).

Photosynth. Res. (2)

W. A. Arnold, “Experiments,” Photosynth. Res. 27, 73-82(1991).

V. Goltsev, P. Chernev, I. Zaharieva, P. Lambrev, and R. J. Strasser, “Kinetics of delayed cholorophyll a fluorescence registered in the ms time range,” Photosynth. Res. 84, 209-215(2005).

Plant science letters (1)

V. Goltsev, T. Ortoidze, Z. Socolov, D. Matorin, and P. Venediktov, “Delayed luminescence yield kinetics in flash illuminated green plants,” Plant science letters 19, 339-346 (1980).

Planta (1)

N. G. Bukhov, U. Heber, C. Wiese, and V. A. Shuvalov, “Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?,” Planta 212, 749-758(2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

D. Mauzerall, “Light-induced fluorescence changes in chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. USA 69, 1358-1362 (1972).

Rev. Sci. Instrum. (1)

D. R. James, A. Siemiarczuk, and W. R. Ware, “Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes,” Rev. Sci. Instrum. 63, 1710-1716 (1992).
[CrossRef]

Other (11)

Govindjee, J. Amesz, and D. C. Fork, Light Emission by Plants and Bacteria (Academic, 1986).

P. Falkowski and J. Raven, Aquatic Photosynthesis, (Blackwell Science, 1997).

T. J. Bensky (Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407), L. Chemo, C. Gilbert, B. Neff, M. A. Moline, I. Robbins, and D. Rohan are preparing a paper to be called “Streak camera apparatus for instantaneous observation of nanosecond laser induced fluorescence of in vitro seawater.”

Crystalaser, 4750 Longley Ln., Suite 205, Reno, Nevada 89502, www.crystalaser.com. Laser model #QB440.

Photek Inc., 26 Castleham Road St, Leonards on Sea, East Sussex, TN38 9NS, United Kingdom, www.photek.com.

Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, California 94089, www.thinksrs.com, Model #DG535.

See “ImageJ” software at http://rsb.info.nih.gov/ij/.

A readily available 685 nm continuous-wave diode laser was used for this calibration step. Power was controlled via neutral density filters.

G. Papageorgiou and Govindjee, Chlorophyll a Fluorescence: a Signature of Photosynthesis (Springer, 2004).

Hydroid, LLC, 6 Benjamin Nye Circle, Pocasset, Massachusetts 02559-4900, www.hydroid.com.

Ocean Optics, 830 Douglas Ave., Dunedin, Florida 34698, USA, www.oceanoptics.com, see the USB-4000 spectrometer.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the apparatus used in this work. The laser pumps a column of seawater, oriented parallel to the slit of a streak camera. Imaging optics creates an image of the water traversed by the laser beam onto the aperture of the streak camera, after passing through a blue-reject and 685 nm bandpass filter. A CCD camera is used to capture the resulting streak camera output

Fig. 2
Fig. 2

Typical streak image obtained for in vitro seawater.

Fig. 3
Fig. 3

Laser (solid curve) versus fluorescence (dotted curve) as extracted from a horizontal row near 20 cm in Fig. 2. The laser curve was taken independently from the fluorescence curve, with the laser-light reject filter removed.

Fig. 4
Fig. 4

Initial steps in the “Z-diagram” of photosynthesis adapted from Ref. [22]. It is believed the 70 ns laser pulse we used cannot compete with the 4 ns recombination step between P + and I .

Fig. 5
Fig. 5

Fluorescent yield versus laser fluence, as derived from the data shown in Fig. 3 by eliminating time between the two curves. The slope is the functional cross section for in vitro seawater phytoplankton.

Metrics