Abstract

We present a novel approach for generating three-dimensional (3-D) integral images from a fringe pattern of 3-D objects. A recorded hologram of 3-D objects is segmented into a number of subholograms. Then, different views of 3-D objects are reconstructed from them because each subhologram has its own perspective of 3-D objects in the recording process. These locally reconstructed images can be rearranged as the same subimage array of the conventional integral-imaging system and transformed into virtually picked-up elemental images of 3-D objects. From this newly generated elemental image array, 3-D images could easily be reconstructed by using a white light. Experiments with a 3-D test object have been performed and the results have been presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iizuka, “Welcome to the wonderful world of 3-D: introduction, principles and history,” Opt. Photon. News 17, 42-51 (2006).
    [CrossRef]
  2. S.-C. Kim and E.-S. Kim, “A new liquid crystal display-based polarized stereoscopic projection method with improved light efficiency,” Opt. Commun. 249, 51-63 (2005).
    [CrossRef]
  3. S.-C. Kim and E.-S. Kim, “A novel configuration of LCD projectors for efficient orthogonal polarization of two projected views,” Opt. Commun. 266, 55-66 (2006).
    [CrossRef]
  4. C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (Wiley, 2002).
    [CrossRef]
  5. U. Schnars and W. Jueptner, Digital Holography-Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2004).
  6. T. -C. Poon, Digital Holography and Three-Dimensional Display (Springer Verlag, 2007).
  7. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  8. S.-C. Kim, D.-C. Hwang, D.-H. Lee, and E.-S. Kim, “Computer-generated holograms of a real three-dimensional object based on stereoscopic video images,” Appl. Opt. 45, 5669-5676 (2006).
    [CrossRef] [PubMed]
  9. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55-D62 (2008).
    [CrossRef] [PubMed]
  10. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).
  11. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  12. S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186-4195 (2003).
    [CrossRef] [PubMed]
  13. B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Display Technol. 1, 341-346 (2005).
    [CrossRef]
  14. P. Hariharan, Optical Holography: Principles, Techniques, and Applications, Cambridge Studies in Modern Optics (Cambridge University Press, 1996).
  15. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  16. J.-H. Park, S. Jung, H. Choi, Y. Kim, and B. Lee, “Depth extraction by use of a rectangular lens array and one-dimensional elemental image modification,” Appl. Opt. 43, 4882-4895 (2004).
    [CrossRef] [PubMed]
  17. S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186-4195 (2003).
    [CrossRef] [PubMed]
  18. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157-159(2001).
    [CrossRef]
  19. S. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491 (2004).
    [CrossRef] [PubMed]
  20. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
    [CrossRef]
  21. D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, “Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields,” ETRI J. 27, 708-712 (2005).
    [CrossRef]

2008 (1)

2006 (3)

S.-C. Kim, D.-C. Hwang, D.-H. Lee, and E.-S. Kim, “Computer-generated holograms of a real three-dimensional object based on stereoscopic video images,” Appl. Opt. 45, 5669-5676 (2006).
[CrossRef] [PubMed]

K. Iizuka, “Welcome to the wonderful world of 3-D: introduction, principles and history,” Opt. Photon. News 17, 42-51 (2006).
[CrossRef]

S.-C. Kim and E.-S. Kim, “A novel configuration of LCD projectors for efficient orthogonal polarization of two projected views,” Opt. Commun. 266, 55-66 (2006).
[CrossRef]

2005 (4)

S.-C. Kim and E.-S. Kim, “A new liquid crystal display-based polarized stereoscopic projection method with improved light efficiency,” Opt. Commun. 249, 51-63 (2005).
[CrossRef]

B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Display Technol. 1, 341-346 (2005).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, “Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields,” ETRI J. 27, 708-712 (2005).
[CrossRef]

2004 (2)

2003 (2)

2001 (2)

1997 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

Arai, J.

Arimoto, H.

Cho, M.

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, “Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields,” ETRI J. 27, 708-712 (2005).
[CrossRef]

Choi, H.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Hariharan, P.

P. Hariharan, Optical Holography: Principles, Techniques, and Applications, Cambridge Studies in Modern Optics (Cambridge University Press, 1996).

Hong, S.

Hong, S.-H.

Hoshino, H.

Hwang, D.-C.

Iizuka, K.

K. Iizuka, “Welcome to the wonderful world of 3-D: introduction, principles and history,” Opt. Photon. News 17, 42-51 (2006).
[CrossRef]

Jang, J.-S.

Javidi, B.

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography-Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2004).

Jung, S.

Kim, E.-S.

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55-D62 (2008).
[CrossRef] [PubMed]

S.-C. Kim, D.-C. Hwang, D.-H. Lee, and E.-S. Kim, “Computer-generated holograms of a real three-dimensional object based on stereoscopic video images,” Appl. Opt. 45, 5669-5676 (2006).
[CrossRef] [PubMed]

S.-C. Kim and E.-S. Kim, “A novel configuration of LCD projectors for efficient orthogonal polarization of two projected views,” Opt. Commun. 266, 55-66 (2006).
[CrossRef]

S.-C. Kim and E.-S. Kim, “A new liquid crystal display-based polarized stereoscopic projection method with improved light efficiency,” Opt. Commun. 249, 51-63 (2005).
[CrossRef]

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, “Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields,” ETRI J. 27, 708-712 (2005).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

Kim, S.-C.

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55-D62 (2008).
[CrossRef] [PubMed]

S.-C. Kim, D.-C. Hwang, D.-H. Lee, and E.-S. Kim, “Computer-generated holograms of a real three-dimensional object based on stereoscopic video images,” Appl. Opt. 45, 5669-5676 (2006).
[CrossRef] [PubMed]

S.-C. Kim and E.-S. Kim, “A novel configuration of LCD projectors for efficient orthogonal polarization of two projected views,” Opt. Commun. 266, 55-66 (2006).
[CrossRef]

S.-C. Kim and E.-S. Kim, “A new liquid crystal display-based polarized stereoscopic projection method with improved light efficiency,” Opt. Commun. 249, 51-63 (2005).
[CrossRef]

Kim, Y.

Kuo, C. J.

C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (Wiley, 2002).
[CrossRef]

Lee, B.

Lee, D.-H.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

Min, S.-W.

Okano, F.

Park, J.-H.

Park, K.-C.

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, “Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields,” ETRI J. 27, 708-712 (2005).
[CrossRef]

Poon, T.-C.

T. -C. Poon, Digital Holography and Three-Dimensional Display (Springer Verlag, 2007).

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography-Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2004).

Shin, D.-H.

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, “Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields,” ETRI J. 27, 708-712 (2005).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

Tsai, M. H.

C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (Wiley, 2002).
[CrossRef]

Yuyama, I.

Appl. Opt. (6)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

ETRI J. (1)

D.-H. Shin, M. Cho, K.-C. Park, and E.-S. Kim, “Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields,” ETRI J. 27, 708-712 (2005).
[CrossRef]

J. Display Technol. (1)

Jpn. J. Appl. Phys. (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (2)

S.-C. Kim and E.-S. Kim, “A new liquid crystal display-based polarized stereoscopic projection method with improved light efficiency,” Opt. Commun. 249, 51-63 (2005).
[CrossRef]

S.-C. Kim and E.-S. Kim, “A novel configuration of LCD projectors for efficient orthogonal polarization of two projected views,” Opt. Commun. 266, 55-66 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Photon. News (1)

K. Iizuka, “Welcome to the wonderful world of 3-D: introduction, principles and history,” Opt. Photon. News 17, 42-51 (2006).
[CrossRef]

Other (4)

C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (Wiley, 2002).
[CrossRef]

U. Schnars and W. Jueptner, Digital Holography-Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Verlag, 2004).

T. -C. Poon, Digital Holography and Three-Dimensional Display (Springer Verlag, 2007).

P. Hariharan, Optical Holography: Principles, Techniques, and Applications, Cambridge Studies in Modern Optics (Cambridge University Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Block diagram of the proposed hybrid 3-D imaging and display system.

Fig. 2
Fig. 2

Computational model for generation of a Fresnel hologram.

Fig. 3
Fig. 3

3-D test object consisting of two 2-D alphabetical images.

Fig. 4
Fig. 4

Geometry of hologram recording with an off-axis reference beam.

Fig. 5
Fig. 5

(a) Nonoverlapped and (b) overlapped segmentation of the hologram pattern.

Fig. 6
Fig. 6

Geometry of the viewing angle of each hologram region.

Fig. 7
Fig. 7

Reconstructed images from subholograms: (a) (1,1) image, (b) (1,16) image, (c) (16,1) image, and (d) (16,16) image.

Fig. 8
Fig. 8

Analysis of horizontal and vertical shifts of the reconstructed images. (a) Reconstructed image of the subhologram of (1, 1) of Fig. 7; (b) maximum window for all reconstructed images.

Fig. 9
Fig. 9

Segmented object images with the maximum window: (a) (1,1) object image, (b) (1,16) object image, (c) (16,1) object image, and (d) (16,16) object image.

Fig. 10
Fig. 10

Object images viewed at each point in integral imaging.

Fig. 11
Fig. 11

(a) Horizontal and (b) vertical disparities between two reconstructed object images.

Fig. 12
Fig. 12

Generated (a) subimage and (b) elemental image arrays.

Fig. 13
Fig. 13

Procedure for generation of an elemental image array from a subimage array.

Fig. 14
Fig. 14

Operational principle of the CIIR method.

Fig. 15
Fig. 15

Object images reconstructed with the integral-imaging method. (a) Reconstructed image focused on the object plane of K; (b) reconstructed image focused on the object plane of W.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

O ( x , y ) = p = 1 N a p r p exp [ j ( k r p + ϕ p ) ] ,
r p = ( x x p ) 2 + ( y y p ) 2 + z p 2 .
R ( x , y ) = a R exp [ j ( k x sin θ R ) ] ,
I ( x , y ) = | R ( x , y ) + O ( x , y ) | 2 = | R ( x , y ) | 2 + | O ( x , y ) | 2 + 2 | R ( x , y ) O ( x , y ) | cos [ k r p + k x sin θ R + ϕ p ] .
I ( x , y ) = 2 p = 1 N a p r p cos ( k r p + k x sin θ R + ϕ p ) .
S I k , l ( u , v ) = I I ( k U + u , l V + v ) ,
E I u , v ( k , l ) = I I ( u K + k , v L + l ) ,

Metrics