Abstract

Low-attenuation waveguides based on the propagation of long-range surface plasmon polaritons (LRSPPs) along thin Au stripes embedded in low absorption perfluorocyclobutane (PFCB) polymer are presented. A new low in propagation loss of <2.0dB/cm was achieved for a 4μm wide waveguide by optimizing the cladding material and fabrication process. The coupling efficiency between the LRSPP waveguide and the optical fiber is studied theoretically and experimentally for different widths of Au stripes and various cladding thicknesses. Lower coupling loss is found when the cladding thickness is close to the mode diameter of the butt-coupled fiber. Based on the 2D distribution of SPP modes calculated by a finite-difference mode solver, a symmetric structure of multilayer claddings with different refractive indices is proposed to optimize device insertion loss.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  2. G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?,” New J. Phys. 8, 125 (2006).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  4. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
    [CrossRef]
  5. S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).
    [CrossRef]
  6. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  7. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
    [CrossRef]
  8. P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105 (2007).
    [CrossRef]
  9. I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971-1977 (2006).
    [CrossRef]
  10. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal of finite width,” Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  11. R. Charbonneau, C. Seales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477-494 (2006).
    [CrossRef]
  12. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233-1241 (2006).
    [CrossRef]
  13. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
    [CrossRef]
  14. J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
    [CrossRef]
  15. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668-670 (2003).
    [CrossRef]
  16. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
    [CrossRef]
  17. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
    [CrossRef]
  18. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
    [CrossRef]
  19. S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402-404 (2006).
    [CrossRef]
  20. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391-4402 (2006).
    [CrossRef]
  21. A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolaysen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005).
    [CrossRef] [PubMed]
  22. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polariton,” J. Lightwave Technol. 24, 912-918 (2006).
    [CrossRef]
  23. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-rangings surface plasmon polariton waveguides,” Opt. Express 13, 4674 (2005).
    [CrossRef] [PubMed]
  24. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. L. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413-422 (2005).
    [CrossRef]
  25. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
    [CrossRef]
  26. D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
    [CrossRef]
  27. J. Jiang, C. L. Callender, C. Blanchètiere, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith Jr, “Property-tailorable PFCB-containing polymers for wavelength division devices,” J. Lightwave Technol. 24, 3227-3234 (2006).
    [CrossRef]
  28. M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds., Handbook of Optics II (McGraw-Hill, 1995).

2008 (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

2007 (3)

P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105 (2007).
[CrossRef]

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

2006 (11)

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233-1241 (2006).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?,” New J. Phys. 8, 125 (2006).
[CrossRef]

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).
[CrossRef]

R. Charbonneau, C. Seales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477-494 (2006).
[CrossRef]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polariton,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971-1977 (2006).
[CrossRef]

J. Jiang, C. L. Callender, C. Blanchètiere, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith Jr, “Property-tailorable PFCB-containing polymers for wavelength division devices,” J. Lightwave Technol. 24, 3227-3234 (2006).
[CrossRef]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391-4402 (2006).
[CrossRef]

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402-404 (2006).
[CrossRef]

2005 (5)

2004 (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

2003 (2)

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

2001 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

2000 (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal of finite width,” Opt. Lett. 25, 844-846 (2000).
[CrossRef]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Ballato, J.

J. Jiang, C. L. Callender, C. Blanchètiere, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith Jr, “Property-tailorable PFCB-containing polymers for wavelength division devices,” J. Lightwave Technol. 24, 3227-3234 (2006).
[CrossRef]

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Barnes, W. L.

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?,” New J. Phys. 8, 125 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105 (2007).
[CrossRef]

I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971-1977 (2006).
[CrossRef]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391-4402 (2006).
[CrossRef]

R. Charbonneau, C. Seales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477-494 (2006).
[CrossRef]

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-rangings surface plasmon polariton waveguides,” Opt. Express 13, 4674 (2005).
[CrossRef] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal of finite width,” Opt. Lett. 25, 844-846 (2000).
[CrossRef]

Berolo, E.

Blanchètiere, C.

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233-1241 (2006).
[CrossRef]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polariton,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolaysen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237-4243 (2005).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Bozhevolnyi, S. L.

Breukelaar, I.

Callender, C. L.

Charbonneau, R.

Chen, S.

J. Jiang, C. L. Callender, C. Blanchètiere, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith Jr, “Property-tailorable PFCB-containing polymers for wavelength division devices,” J. Lightwave Technol. 24, 3227-3234 (2006).
[CrossRef]

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Fafard, S.

Foulger, S.

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Gagnon, G.

Jette-Charbonneau, S.

Jiang, J.

Ju, J. J.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

Kim, J. T.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

Kim, K. C.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, M.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

Kim, M.-S.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

Kim, P. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, S. I.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kjaer, K.

Kumar, S.

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Lahoud, N.

Larsen, M. S.

Lee, M. H.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

Lee, M.-H.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

Leosson, K.

Lisicka-Shrzek, E.

Maier, S. A.

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Mattiussi, G.

Mattiussi, G. A.

Nikolajsen, T.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polariton,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. L. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413-422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Nikolaysen, T.

Noad, J. P.

Oh, C.-H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Park, S.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402-404 (2006).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Park, S. K.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

Park, Y. J.

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Seales, C.

Shah, H.

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Smith, D. W.

J. Jiang, C. L. Callender, C. Blanchètiere, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith Jr, “Property-tailorable PFCB-containing polymers for wavelength division devices,” J. Lightwave Technol. 24, 3227-3234 (2006).
[CrossRef]

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Sondergaard, T.

Song, S. H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402-404 (2006).
[CrossRef]

Topping, C.

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Wedge, S.

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?,” New J. Phys. 8, 125 (2006).
[CrossRef]

Winter, G.

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?,” New J. Phys. 8, 125 (2006).
[CrossRef]

Won, H. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Adv. Mater. (1)

D. W. Smith Jr., S. Chen, S. Kumar, J. Ballato, H. Shah, C. Topping, and S. Foulger, “Perfluorocyclobutyl copolymers for microphotonics,” Adv. Mater. 14, 1585 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polariton,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

J. J. Ju, S. Park, M. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M. H. Lee, “40 Gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117(2007).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Electron. Lett. (1)

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402-404 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. A. Maier, “Plasmonics: metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1214-1220 (2006).
[CrossRef]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233-1241 (2006).
[CrossRef]

J. Appl. Phys. (4)

P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105 (2007).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. A (1)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmon-polariton mode?,” New J. Phys. 8, 125 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photon. Technol. Lett. (1)

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” Photon. Technol. Lett. 19, 1374-1376 (2007).
[CrossRef]

Phys. Rev. B (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484-10503 (2000).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1-41 (2008).
[CrossRef]

Other (1)

M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds., Handbook of Optics II (McGraw-Hill, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Characterization of an evaporated Au thin film: (a) SEM photograph, (b) topographic image from AFM, (c) AFM line profile measurement.

Fig. 2
Fig. 2

Experimental PFCB refractive index as a function of curing time.

Fig. 3
Fig. 3

(a) Typical LRSPP images captured on an infrared camera at the end of the waveguide and (b) propagation loss measurement by the cutback technique.

Fig. 4
Fig. 4

Experimental propagation loss in LRSPP waveguides as a function of stripe width for cladding thicknesses of 10, 15, and 20 μm .

Fig. 5
Fig. 5

A, Simulated SPP mode field distribution; B, profile along the vertical (Y axis); C, lateral direction (X axis).

Fig. 6
Fig. 6

Simulated SPP mode field distribution in half-width of FWHM in the X and Y directions. (Curve a is for the vertical direction and curves b and c are for the lateral direction).

Fig. 7
Fig. 7

SPP patterns in 3 and 8 μm wide stripes with 15 μm thick cladding: (a) detected on an infrared camera and (b) simulated by the finite-difference method.

Fig. 8
Fig. 8

Theoretical and experimental coupling loss as a function of stripe width for Au in 10 μm thick PFCB.

Fig. 9
Fig. 9

Simulated LRSPP mode field distribution in vertical and lateral directions for a 4 μm wide stripe in 10, 20, and 30 μm thick claddings: (a) vertical direction and (b) lateral direction.

Fig. 10
Fig. 10

Images detected by infrared camera for the 8 μm × 12 nm Au stripes embedded in (a)  10 μm and (b)  20 μm thick PFCB.

Fig. 11
Fig. 11

Simulated coupling and propagation losses as a function of cladding thickness for 4, 6, and 8 μm wide stripes.

Fig. 12
Fig. 12

Experimental coupling loss as a function of stripe width for waveguides with 7, 10, 15, 20, and 26 μm thick claddings.

Fig. 13
Fig. 13

Structures of Au thin film in (a) multilayer claddings and (b) single layer cladding.

Fig. 14
Fig. 14

Simulated SPP mode fields in various cladding structures: (a)  6 14 6 μm cladding; (b)  26 μm cladding.

Tables (1)

Tables Icon

Table 1 Measured Propagation Loss and Coupling Loss for Two Cladding Structures with Various Stripe Widths

Metrics