Abstract

The recently developed short wave infrared (SWIR) atmospheric correction algorithm for ocean color retrieval uses long wavelength channels to retrieve atmospheric parameters to avoid bright pixel contamination. However, this retrieval is highly sensitive to errors in the aerosol model, which is magnified by the higher variability of aerosols observed over urban coastal areas. While adding extra regional aerosol models into the retrieval lookup tables would tend to increase retrieval error since these models are hard to distinguish in the IR, we explore the possibility that for highly productive waters with high colored dissolved organic matter, an estimate of the 412nm channel water-leaving reflectance can be used to constrain the aerosol model retrieval and improve the water-leaving reflectance retrieval. Simulations show that this constraint is particularly useful where aerosol diversity is significant. To assess this algorithm we compare our retrievals with the operational SeaWiFS Data Analysis System (SeaDAS) SWIR and near infrared retrievals using in situ validation data in the Chesapeake Bay and show that, especially for absorbing aerosols, significant improvement is obtained. Further insight is also obtained by the intercomparison of retrieved remote sensing reflectance images at 443 and 551nm, which demonstrates the removal of anomalous artifacts in the operational SeaDAS retrieval.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443-452 (1994).
    [CrossRef] [PubMed]
  2. M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89, 326-350 (2004).
    [CrossRef]
  3. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39, 897-912 (2000).
    [CrossRef]
  4. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
    [CrossRef]
  5. C. Hu, K. L. Carder, K. Muller, and E. Frank, “Atomospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195-206 (2000).
    [CrossRef]
  6. URL: http://oceancolor.gsfc.nasa.gov/seadas/.
  7. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.
  8. R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).
  9. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582-3591 (2000).
    [CrossRef]
  10. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32, L13606, doi:10.1029/2005GL022917 (2005).
    [CrossRef]
  11. B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887-896 (2000).
    [CrossRef]
  12. B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
    [CrossRef]
  13. V. Ransibrahmanakul and R. P. Stumpf, “Correcting ocean colour reflectance for absorbing aerosols,” Int. J. Remote Sens. 27, 1759-1774 (2006).
    [CrossRef]
  14. R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005).
    [CrossRef]
  15. F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
    [CrossRef]
  16. Z. Ahmad, C. R. McClain, J. R. Herman, B. A. Franz, E. Kwiatkowska, W. D. Robinson, E. D. Bucsela, and M. Tzortziou, “Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements,” Appl. Opt. 46, 6504-6512 (2007).
    [CrossRef] [PubMed]
  17. M. I. Mishchenko, L. Travis, and A. Lacis, Multiple Scattering of Light by Particles (Cambridge University, 2006), Chap. 13, p. 478.
  18. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214, U.S. Air Force Geophys. Laboratory, Hanscom Air Force Base, Massachusetts, 1979.
  19. A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
    [CrossRef]
  20. A. I. Lyapustin, “Radiative transfer code SHARM for atmospheric and terrestrial applications,” Appl. Opt. 44, 7764-7772 (2005).
    [CrossRef] [PubMed]
  21. Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide. NASA Technical Publication 1998-206895, ftp://toms.gsfc.nasa.gov/pub/eptoms/EARTHPROBE_USERGUIDE.PDF.
  22. International Ocean Colour Coordinating Group, “Minimum requirements for an operational ocean-colour sensor for the open ocean,” Rep. 1 (International Ocean Colour Coordinating Group, 1998), p 46.
  23. L. A. Remer, D. Tanre, and Y. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collection 5,” ATBD-02 Document, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf.
  24. J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004).
    [CrossRef]
  25. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.
  26. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
    [CrossRef]

2007 (2)

B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
[CrossRef]

Z. Ahmad, C. R. McClain, J. R. Herman, B. A. Franz, E. Kwiatkowska, W. D. Robinson, E. D. Bucsela, and M. Tzortziou, “Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements,” Appl. Opt. 46, 6504-6512 (2007).
[CrossRef] [PubMed]

2006 (2)

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

V. Ransibrahmanakul and R. P. Stumpf, “Correcting ocean colour reflectance for absorbing aerosols,” Int. J. Remote Sens. 27, 1759-1774 (2006).
[CrossRef]

2005 (5)

R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005).
[CrossRef]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32, L13606, doi:10.1029/2005GL022917 (2005).
[CrossRef]

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
[CrossRef]

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

A. I. Lyapustin, “Radiative transfer code SHARM for atmospheric and terrestrial applications,” Appl. Opt. 44, 7764-7772 (2005).
[CrossRef] [PubMed]

2004 (2)

J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004).
[CrossRef]

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89, 326-350 (2004).
[CrossRef]

2000 (4)

1998 (1)

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

1994 (1)

Ahmad, Z.

Aiken, J.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
[CrossRef]

Arnone, R. A.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.

R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).

Bhartia, P. N. K.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Blondeau-Patissier, D.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
[CrossRef]

Bucsela, E. D.

Carder, K. L.

C. Hu, K. L. Carder, K. Muller, and E. Frank, “Atomospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195-206 (2000).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Darecki, M.

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89, 326-350 (2004).
[CrossRef]

Davis, C. O.

B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
[CrossRef]

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887-896 (2000).
[CrossRef]

de Haan, J. F.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Dierssen, H. M.

B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
[CrossRef]

Dubovik, O.

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

Fenn, R. W.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214, U.S. Air Force Geophys. Laboratory, Hanscom Air Force Base, Massachusetts, 1979.

Frank, E.

C. Hu, K. L. Carder, K. Muller, and E. Frank, “Atomospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195-206 (2000).
[CrossRef]

Franz, B. A.

Gao, B.-C.

B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
[CrossRef]

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887-896 (2000).
[CrossRef]

Garver, S. A.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Gijsbertus, G. W. L.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Gordon, H. R.

Gould, R. W.

R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.

Herman, J. R.

Hilsenrath, E.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Hu, C.

C. Hu, K. L. Carder, K. Muller, and E. Frank, “Atomospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195-206 (2000).
[CrossRef]

Kahru, M.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Kaufman, Y.

L. A. Remer, D. Tanre, and Y. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collection 5,” ATBD-02 Document, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf.

Kaufman, Y. J.

R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005).
[CrossRef]

Kwiatkowska, E.

Lacis, A.

M. I. Mishchenko, L. Travis, and A. Lacis, Multiple Scattering of Light by Particles (Cambridge University, 2006), Chap. 13, p. 478.

Ladner, S.

R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).

Lavender, S. J.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
[CrossRef]

Lee, Z. P.

Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.

Levelt, F.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Levy, R. C.

R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005).
[CrossRef]

Li, R.-R.

B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
[CrossRef]

Lyapustin, A. I.

Mackenzie, C.

J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004).
[CrossRef]

Maritorena, S.

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582-3591 (2000).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Martinolich, P.

R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).

Martinolich, P. M.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.

Martins, J. V.

R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005).
[CrossRef]

McClain, C. R.

Z. Ahmad, C. R. McClain, J. R. Herman, B. A. Franz, E. Kwiatkowska, W. D. Robinson, E. D. Bucsela, and M. Tzortziou, “Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements,” Appl. Opt. 46, 6504-6512 (2007).
[CrossRef] [PubMed]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

McCormick, M. P.

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

Mertes, L. A. K.

J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. Travis, and A. Lacis, Multiple Scattering of Light by Particles (Cambridge University, 2006), Chap. 13, p. 478.

Mitchell, B. G.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Montes, M. J.

B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
[CrossRef]

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39, 887-896 (2000).
[CrossRef]

Moore, G. F.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
[CrossRef]

Muller, K.

C. Hu, K. L. Carder, K. Muller, and E. Frank, “Atomospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195-206 (2000).
[CrossRef]

Omar, A. H.

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

O'Reilly, J. E.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Ovidio, F.

Pinkerton, M. H.

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
[CrossRef]

Ransibrahmanakul, V.

V. Ransibrahmanakul and R. P. Stumpf, “Correcting ocean colour reflectance for absorbing aerosols,” Int. J. Remote Sens. 27, 1759-1774 (2006).
[CrossRef]

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.

Remer, L. A.

R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005).
[CrossRef]

L. A. Remer, D. Tanre, and Y. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collection 5,” ATBD-02 Document, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf.

Rijkeboer, M.

Robinson, W.

Robinson, W. D.

Ruddick, K. G.

Shettle, E. P.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214, U.S. Air Force Geophys. Laboratory, Hanscom Air Force Base, Massachusetts, 1979.

Shi, W.

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32, L13606, doi:10.1029/2005GL022917 (2005).
[CrossRef]

Siegel, D. A.

J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004).
[CrossRef]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582-3591 (2000).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Stramski, D.

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89, 326-350 (2004).
[CrossRef]

Stumpf, R.

R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).

Stumpf, R. P.

V. Ransibrahmanakul and R. P. Stumpf, “Correcting ocean colour reflectance for absorbing aerosols,” Int. J. Remote Sens. 27, 1759-1774 (2006).
[CrossRef]

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.

Tamminen, J.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Tanre, D.

L. A. Remer, D. Tanre, and Y. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collection 5,” ATBD-02 Document, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf.

Travis, L.

M. I. Mishchenko, L. Travis, and A. Lacis, Multiple Scattering of Light by Particles (Cambridge University, 2006), Chap. 13, p. 478.

Tzortziou, M.

van den Oord, H. J.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Veefkind, J. P.

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

Wang, M.

Warrick, J. A.

J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004).
[CrossRef]

Winker, D. M.

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

Won, J. G.

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

Yoon, S.-C.

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

Appl. Opt. (6)

Cont. Shelf Res. (1)

S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters,” Cont. Shelf Res. 25, 539-555 (2005).
[CrossRef]

Geophys. Res. Lett. (1)

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near infrared wavelengths along the east coast of the U.S.: two case studies,” Geophys. Res. Lett. 32, L13606, doi:10.1029/2005GL022917 (2005).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

F. Levelt, E. Hilsenrath, G. W. L. Gijsbertus, H. J. van den Oord, P. N. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, “Science objectives of the ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1199-1208(2006).
[CrossRef]

B.-C. Gao, M. J. Montes, R.-R. Li, H. M. Dierssen, and C. O. Davis, “An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region,” IEEE Trans. Geosci. Remote Sens. 45, 1835-1843, doi:10.1109/TGRS.2007.895949 (2007).
[CrossRef]

Int. J. Remote Sens. (2)

V. Ransibrahmanakul and R. P. Stumpf, “Correcting ocean colour reflectance for absorbing aerosols,” Int. J. Remote Sens. 27, 1759-1774 (2006).
[CrossRef]

J. A. Warrick, L. A. K. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens. 25, 1995-2002 (2004).
[CrossRef]

J. Atmos. Sci. (1)

R. C. Levy, L. A. Remer, J. V. Martins, and Y. J. Kaufman, “Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS,” J. Atmos. Sci. 62, 974-992 (2005).
[CrossRef]

J. Geophys. Res. (2)

A. H. Omar, J. G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi: 10.1027/2004JD004874 (2005).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Remote Sens. Environ. (2)

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89, 326-350 (2004).
[CrossRef]

C. Hu, K. L. Carder, K. Muller, and E. Frank, “Atomospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74, 195-206 (2000).
[CrossRef]

Other (9)

URL: http://oceancolor.gsfc.nasa.gov/seadas/.

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS postlaunch,” S. B. Hooker and E. R. Firestone, eds., NASA Tech. Memo. 2003-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003, pp. 51-59.

R. A. Arnone, P. Martinolich, R. W. Gould Jr., R. Stumpf, and S. Ladner, “Coastal optical properties using SeaWiFS,” in Proceedings, Ocean Optics XIV, S. Ackleson and J. Campbell, eds., (Office of Naval Research, 1998).

M. I. Mishchenko, L. Travis, and A. Lacis, Multiple Scattering of Light by Particles (Cambridge University, 2006), Chap. 13, p. 478.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214, U.S. Air Force Geophys. Laboratory, Hanscom Air Force Base, Massachusetts, 1979.

Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.

Earth Probe Total Ozone Mapping Spectrometer (TOMS) Data Products User's Guide. NASA Technical Publication 1998-206895, ftp://toms.gsfc.nasa.gov/pub/eptoms/EARTHPROBE_USERGUIDE.PDF.

International Ocean Colour Coordinating Group, “Minimum requirements for an operational ocean-colour sensor for the open ocean,” Rep. 1 (International Ocean Colour Coordinating Group, 1998), p 46.

L. A. Remer, D. Tanre, and Y. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: collection 5,” ATBD-02 Document, http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Normalized water-leaving reflectance in situ measurements from the SeaBASS database.

Fig. 2
Fig. 2

Intercomparison of measurements with a bio-optical estimator to verify the property that the estimator in general underestimates the water-leaving signal.

Fig. 3
Fig. 3

Cumulative distribution of residual error for the bio-optical estimator and the mean (threshold) estimator. Both Chesapeake Bay and global waters are shown.

Fig. 4
Fig. 4

Variability of aerosol multiple scattering (log) ϵ (SeaDAS models): (a) NIR and (b) SWIR.

Fig. 5
Fig. 5

SWIR ϵ factors log ( ε ( λ , 2130 ) ) for different atmosphere models: (a) SeaDAS LUT and (b) AERONET LUT.

Fig. 6
Fig. 6

Relationship between the albedo and the atmosphere path reflectance (blue–green) ratio as function of aerosol SSA.

Fig. 7
Fig. 7

CDF for the blue–green atmosphere ratio for the AERONET site near Chesapeake.

Fig. 8
Fig. 8

Fractional error of 760 nm estimator using data from the SeaBASS database.

Fig. 9
Fig. 9

Statistical CDF of fractional normalized water-leaving reflectance uncertainties using the NIR retrieval algorithm on the SeaDAS aerosol model LUT with different bright pixel compensation levels: (a)  443 nm , (b)  488 nm , (c)  551 nm .

Fig. 10
Fig. 10

Statistical CDF of fractional normalized water-leaving reflectance uncertainties using the SWIR retrieval algorithm on the SeaDAS with different 412 nm water-leaving reflectance constraint levels: (a)  443 nm , (b)  488 nm , and (c)  551 nm .

Fig. 11
Fig. 11

Statistical CDF of fractional normalized water-leaving reflectance uncertainties using the SWIR retrieval algorithm on the SeaDAS + AERONET LUT with different 412 nm water-leaving reflectance constraint levels: (a)  443 nm , (b)  488 nm , and (c)  551 nm .

Fig. 12
Fig. 12

AOD retrieval: (a) SWIR using SeaDAS models and (b) SWIR with regional models and 412 nm constraint.

Fig. 13
Fig. 13

Assessment of AOD retrieval for matchup data sets: (a) SWIR using SeaDAS models compared to regional model and (b) SSA for matchup cases.

Fig. 14
Fig. 14

Comparison of in situ measurements of normalized water-leaving reflectance of SWIR retrieval using standard processing and regional models.

Fig. 15
Fig. 15

Mapping of in situ matchups: nonabsorbing cases in bay (1–4), absorbing cases in bay (5–10), and nonabsorbing cases outside bay (11–17). Numbering taken from Table 4.

Fig. 16
Fig. 16

Intercomparison of the TOA reflectance at 869 nm to ensure the preprocessing of the SWIR bands is in agreement with SeaDAS: (a) SeaDAS and (b) MODIS DAAC + processing.

Fig. 17
Fig. 17

Rrs reflectance comparisons: (a) constrained retrieval at 443 nm , (b) SeaDAS retrieval at 443 nm , (c) constrained retrieval at 551 nm , and (d) SeaDAS retrieval at 551 nm .

Fig. 18
Fig. 18

AOD comparisons at 551 nm : (a) constrained retrieval and (b) SeaDAS retrieval.

Tables (4)

Tables Icon

Table 1 Parameters and Ranges Used in Radiative Transfer LUTs

Tables Icon

Table 2 MODIS Noise Equivalent Delta Reflectance NE Δ ρ for a Solar Angle of 60 °

Tables Icon

Table 3 Fractional Normalized Water-Leaving Reflectance Uncertainties

Tables Icon

Table 4 Matchups of In Situ Remote Sensing Reflectance and SeaDAS Retrievals from MODIS Terra Satellite, Including NIR and SWIR Atmosphere Correction Methods

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρ w n = ρ ¯ w n + Δ ρ w n ,
Δ ρ w n 1 σ = 0.003 at ( 1 σ ) , Δ ρ w n 2 σ = 0.005.
L t ( λ ) = L r ( λ ) + L A ( λ ) + t u ( λ ) L w c ( λ ) + T u ( λ ) L g ( λ ) + t u ( λ ) L w ( λ ) ,
ρ A ( λ ) = ρ t ( λ ) ρ r ( λ ) t u ( λ ) t d ( λ ) ρ w n ( λ ) ,
i S k   iff ρ i , a e r LUT ( λ l ) ρ k TOA ( λ l ) = ρ i , a e r LUT ( λ l ) ρ k , a e r LUT ( λ l ) NE Δ ρ l ,
i S k   iff ρ i ( λ l ) ρ k ( λ l ) t d , k ( λ l ) t d , k ( λ l ) + [ ρ ¯ w n ] l [ t d , i ( λ l ) t d , i ( λ l ) t d , k ( λ l ) t d , k ( λ l ) 1 ] [ Δ ρ w n ] l .
[ NE Δ ρ ] eff = NE Δ ρ / N p .
NE Δ ρ ( λ NIR ) = f ρ w n ( λ NIR ) ¯ ,

Metrics